Difference between revisions of "007A Sample Final 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 7A for the final. An actual test may or may not be similar.''' '''Click on the''' '''<span...")
 
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[009A_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
+
== [[007A_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
<span class="exam">Compute
 
<span class="exam">Compute
  
Line 13: Line 13:
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math>
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math>
  
== [[009A_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
== [[007A_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam"> Let
 
<span class="exam"> Let
  
Line 25: Line 25:
 
<span class="exam"> For what values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; continuous?
 
<span class="exam"> For what values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; continuous?
  
== [[009A_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[007A_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
<span class="exam">Compute &nbsp; <math>\frac{dy}{dx}.</math>
 
<span class="exam">Compute &nbsp; <math>\frac{dy}{dx}.</math>
  
Line 34: Line 34:
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -5px">y=\sin^{-1} x</math>
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -5px">y=\sin^{-1} x</math>
  
== [[009A_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[007A_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
<span class="exam">Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
 
<span class="exam">Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
  
 
::<span class="exam"><math style="vertical-align: -4px">3x^2+xy+y^2=5</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(1,-2)</math>
 
::<span class="exam"><math style="vertical-align: -4px">3x^2+xy+y^2=5</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(1,-2)</math>
  
== [[009A_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
+
== [[007A_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> A lighthouse is located on a small island 3km away from the nearest point &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from &nbsp;<math style="vertical-align: 0px">P?</math>
+
<span class="exam">The velocity &nbsp;<math style="vertical-align: 0px">V</math>&nbsp; of the blood flow of a skier is modeled by
  
== [[009A_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
+
::<math>V=375(R^2-r^2)</math>
 +
 
 +
<span class="exam">where &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; is the radius of the blood vessel, &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; is the distance of the blood flow from the center of the vessel and is a constant. Suppose the skier's blood vessel has radius &nbsp;<math style="vertical-align: 0px">R=0.08</math>&nbsp; mm and that cold weather is causing the vessel to contract at a rate of &nbsp;<math style="vertical-align: -13px">\frac{dR}{dt}=-0.01</math>&nbsp; mm per minute. How fast is the velocity of the blood changing?
 +
 
 +
== [[007A_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
<span class="exam"> Find the absolute maximum and absolute minimum values of the function
 
<span class="exam"> Find the absolute maximum and absolute minimum values of the function
  
Line 49: Line 53:
 
<span class="exam">on the interval &nbsp;<math style="vertical-align: -5px">[0,2].</math>
 
<span class="exam">on the interval &nbsp;<math style="vertical-align: -5px">[0,2].</math>
  
== [[009A_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
+
== [[007A_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
 
<span class="exam"> Show that the equation &nbsp;<math style="vertical-align: -2px">x^3+2x-2=0</math>&nbsp; has exactly one real root.
 
<span class="exam"> Show that the equation &nbsp;<math style="vertical-align: -2px">x^3+2x-2=0</math>&nbsp; has exactly one real root.
  
== [[009A_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
+
== [[007A_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
 
<span class="exam">Compute
 
<span class="exam">Compute
Line 63: Line 67:
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}</math>
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}</math>
  
== [[009A_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
+
== [[007A_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
 +
 
 +
<span class="exam">Spruce budworms are a major pest that defoliate balsam fir. They are preyed upon by birds. A model for the per capita predation rate (percentage of worms that are eaten) is given by
 +
 
 +
::<math>f(N)=\frac{12N}{81+N^2}</math>
  
<span class="exam">A plane begins its takeoff at 2:00pm on a 2500-mile flight. After 5.5 hours, the plane arrives at its destination. Give a precise mathematical reason using the mean value theorem to explain why there are at least two times during the flight when the speed of the plane is 400 miles per hour.
+
<span class="exam">where &nbsp;<math style="vertical-align: 0px">N</math>&nbsp; denotes the density of spruce budworms measured in worms per square meter. Determine where the prediation rate is increasing and where it is decreasing.
  
== [[009A_Sample Final 2,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
+
== [[007A_Sample Final 2,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
  
 
<span class="exam">Let
 
<span class="exam">Let

Latest revision as of 23:12, 2 December 2017

This is a sample, and is meant to represent the material usually covered in Math 7A for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Compute

(a)  

(b)  

(c)  

 Problem 2 

Let

For what values of    is    continuous?

 Problem 3 

Compute  

(a)  

(b)  

(c)  

 Problem 4 

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

  at the point  

 Problem 5 

The velocity    of the blood flow of a skier is modeled by

where    is the radius of the blood vessel,    is the distance of the blood flow from the center of the vessel and is a constant. Suppose the skier's blood vessel has radius    mm and that cold weather is causing the vessel to contract at a rate of    mm per minute. How fast is the velocity of the blood changing?

 Problem 6 

Find the absolute maximum and absolute minimum values of the function

on the interval  

 Problem 7 

Show that the equation    has exactly one real root.

 Problem 8 

Compute

(a)  

(b)  

(c)  

 Problem 9 

Spruce budworms are a major pest that defoliate balsam fir. They are preyed upon by birds. A model for the per capita predation rate (percentage of worms that are eaten) is given by

where    denotes the density of spruce budworms measured in worms per square meter. Determine where the prediation rate is increasing and where it is decreasing.

 Problem 10 

Let

(a) Find all local maximum and local minimum values of    find all intervals where    is increasing and all intervals where    is decreasing.

(b) Find all inflection points of the function    find all intervals where the function    is concave upward and all intervals where    is concave downward.

(c) Find all horizontal asymptotes of the graph  

(d) Sketch the graph of