Difference between revisions of "007A Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
<span class="exam"> A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?
 
<span class="exam"> A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?
 
<hr>
 
<hr>
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
|-
 
|[[File:9AF_5_GP.png|center|550px]]
 
|-
 
|<math style="vertical-align: -3px">30^2+h^2=s^2</math>
 
|-
 
|<math style="vertical-align: -4px">s=50</math>
 
|-
 
|
 
<math>\begin{array}{rcl}
 
\displaystyle{h} & = & \displaystyle{\sqrt{s^2-30^2}}\\
 
&&\\
 
& = & \displaystyle{\sqrt{50^2-30^2}}\\
 
&&\\
 
& = & \displaystyle{40}
 
\end{array}</math>
 
|-
 
|<math>2hh'=2ss'</math>
 
|-
 
|<math>2(40)6=2(50)s'</math>
 
|-
 
|<math>\begin{array}{rcl}
 
\displaystyle{s'} & = & \displaystyle{\frac{2(40)(6)}{2(50)}}\\
 
&&\\
 
& = & \displaystyle{\frac{24}{5} \text{ m/s}}
 
\end{array}</math>
 
|}
 
  
 +
[[007A Sample Midterm 2, Problem 5 Solution|'''<u>Solution</u>''']]
  
'''Detailed Solution'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[007A Sample Midterm 2, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Foundations: &nbsp;
 
|-
 
|'''The Pythagorean Theorem'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; For a right triangle with side lengths &nbsp;<math style="vertical-align: -4px">a,b,c</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; is the length of the
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; hypotenuse, we have &nbsp;<math style="vertical-align: -2px">a^2+b^2=c^2.</math>
 
|}
 
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|[[File:9AF_5_GP.png|center|550px]]
 
|-
 
|From the diagram, we have &nbsp;<math style="vertical-align: -3px">30^2+h^2=s^2</math>&nbsp; by the Pythagorean Theorem.
 
|-
 
|Taking derivatives, we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>2hh'=2ss'.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|If &nbsp; <math style="vertical-align: -4px">s=50,</math>&nbsp; then
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math>
 
|-
 
|So, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">2(40)6=2(50)s'.</math>
 
|-
 
|Solving for &nbsp; <math style="vertical-align: -5px">s',</math>&nbsp;  we get &nbsp; <math style="vertical-align: -14px">s'=\frac{24}{5} \text{ m/s.}</math> &nbsp;
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">s'=\frac{24}{5} \text{ m/s}</math>&nbsp;
 
|}
 
 
[[007A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[007A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 21:01, 11 November 2017

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?


Solution


Detailed Solution


Return to Sample Exam