Difference between revisions of "007B Sample Midterm 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "text")
 
 
Line 1: Line 1:
text
+
'''This is a sample, and is meant to represent the material usually covered in Math 7B for the midterm. An actual test may or may not be similar.'''
 +
 
 +
'''Click on the <span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 +
<div class="noautonum">__TOC__</div>
 +
 
 +
== [[007B_Sample Midterm 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 +
<span class="exam"> This problem has three parts:
 +
 
 +
<span class="exam">(a) State both parts of the fundamental theorem of calculus.
 +
 
 +
<span class="exam">(b) Compute &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_2^{\cos (x)}\sin (t)~dt</math>.
 +
 
 +
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx</math>.
 +
 
 +
== [[007B_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 +
<span class="exam"> Evaluate
 +
 
 +
<span class="exam">(a) &nbsp; <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>
 +
 
 +
<span class="exam">(b) &nbsp; <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
 +
 
 +
== [[007B_Sample Midterm 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam">The population density of a plant species is &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; individual per square meter, where &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is the distance from the river, with &nbsp;<math style="vertical-align: -5px">f(x)\ge 0</math>&nbsp; for &nbsp;<math style="vertical-align: -3px">x\le 100</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)=0</math>&nbsp; for &nbsp;<math style="vertical-align: -3px">x\ge 100.</math> Construct a definite integral to calculate the number of plants along a section of the river of length &nbsp;<math style="vertical-align: 0px">L.</math>
 +
 
 +
== [[007B_Sample Midterm 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 +
<span class="exam"> Find the area of the region bounded by &nbsp;<math style="vertical-align: -4px">y=\ln x,~y=0,~x=1,</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=e.</math>
 +
 
 +
== [[007B_Sample Midterm 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 +
<span class="exam"> Evaluate the integral:
 +
 
 +
::<math>\int \frac{4x}{(x+1)(x^2+1)} ~dx</math>
 +
 
 +
 
 +
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''

Latest revision as of 16:00, 2 November 2017

This is a sample, and is meant to represent the material usually covered in Math 7B for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

This problem has three parts:

(a) State both parts of the fundamental theorem of calculus.

(b) Compute   .

(c) Evaluate  .

 Problem 2 

Evaluate

(a)  

(b)  

 Problem 3 

The population density of a plant species is    individual per square meter, where    is the distance from the river, with    for    and    for   Construct a definite integral to calculate the number of plants along a section of the river of length  

 Problem 4 

Find the area of the region bounded by    and  

 Problem 5 

Evaluate the integral:


Contributions to this page were made by Kayla Murray