Difference between revisions of "007B Sample Midterm 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "text")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
text
+
'''This is a sample, and is meant to represent the material usually covered in Math 7B for the midterm. An actual test may or may not be similar.'''
 +
 
 +
'''Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 +
<div class="noautonum">__TOC__</div>
 +
 
 +
== [[007B_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 +
<span class="exam"> Let &nbsp;<math style="vertical-align: -5px">f(x)=1-x^2</math>.
 +
 
 +
<span class="exam">(a) Compute the left-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
 +
 
 +
<span class="exam">(b) Compute the right-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
 +
 
 +
<span class="exam">(c) Express &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
 +
 
 +
== [[007B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 +
<span class="exam"> A population grows at a rate
 +
 
 +
::<math>P'(t)=500e^{-t}</math>
 +
 
 +
<span class="exam">where &nbsp;<math style="vertical-align: -5px">P(t)</math>&nbsp; is the population after &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; months.
 +
 
 +
<span class="exam">(a) &nbsp; Find a formula for the population size after &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; months, given that the population is &nbsp;<math style="vertical-align: 0px">2000</math>&nbsp; at &nbsp;<math style="vertical-align: 0px">t=0.</math>
 +
 
 +
<span class="exam">(b) &nbsp; Use your answer to part (a) to find the size of the population after one month.
 +
 
 +
== [[007B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam">Evaluate the following integrals.
 +
 
 +
<span class="exam">(a) &nbsp; <math>\int x^2\sqrt{1+x^3}~dx</math>
 +
 
 +
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 +
 
 +
== [[007B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 +
<span class="exam"> Evaluate the following integrals.
 +
 
 +
<span class="exam">(a) &nbsp; <math>\int x^2 e^x~dx</math>
 +
 
 +
<span class="exam">(b) &nbsp; <math>\int \frac{5x-7}{x^2-3x+2}~dx</math>
 +
 
 +
== [[007B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 +
<span class="exam"> Find the area bounded by &nbsp;<math style="vertical-align: -5px">y=\sin(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y=\cos(x)</math>&nbsp; from &nbsp;<math style="vertical-align: -1px">x=0</math>&nbsp; to &nbsp;<math style="vertical-align: -14px">x=\frac{\pi}{4}.</math>
 +
 
 +
 
 +
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''

Latest revision as of 15:01, 2 November 2017

This is a sample, and is meant to represent the material usually covered in Math 7B for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Let  .

(a) Compute the left-hand Riemann sum approximation of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^3 f(x)~dx}   with    boxes.

(b) Compute the right-hand Riemann sum approximation of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^3 f(x)~dx}   with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=3}   boxes.

(c) Express  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^3 f(x)~dx}   as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.

 Problem 2 

A population grows at a rate

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P'(t)=500e^{-t}}

where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(t)}   is the population after  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t}   months.

(a)   Find a formula for the population size after  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t}   months, given that the population is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2000}   at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=0.}

(b)   Use your answer to part (a) to find the size of the population after one month.

 Problem 3 

Evaluate the following integrals.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2\sqrt{1+x^3}~dx}

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx}

 Problem 4 

Evaluate the following integrals.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2 e^x~dx}

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{5x-7}{x^2-3x+2}~dx}

 Problem 5 

Find the area bounded by  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sin(x)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\cos(x)}   from  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0}   to  


Contributions to this page were made by Kayla Murray