Difference between revisions of "007A Sample Midterm 3"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[009A_Sample Midterm 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
+
== [[007A_Sample Midterm 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
<span class="exam"> Find the following limits:
 
<span class="exam"> Find the following limits:
  
Line 13: Line 13:
 
<span class="exam">(c) Find &nbsp;<math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math>
 
<span class="exam">(c) Find &nbsp;<math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math>
  
== [[009A_Sample Midterm 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
== [[007A_Sample Midterm 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam">Suppose the size of a population at time &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; is given by
 
<span class="exam">Suppose the size of a population at time &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; is given by
  
Line 22: Line 22:
 
<span class="exam">(b) Show that at time &nbsp;<math style="vertical-align: -4px">t=5,</math>&nbsp; the size of the population is half its limiting size.
 
<span class="exam">(b) Show that at time &nbsp;<math style="vertical-align: -4px">t=5,</math>&nbsp; the size of the population is half its limiting size.
  
== [[009A_Sample Midterm 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[007A_Sample Midterm 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
<span class="exam"> Find the derivatives of the following functions. '''Do not simplify.'''
 
<span class="exam"> Find the derivatives of the following functions. '''Do not simplify.'''
  
Line 29: Line 29:
 
<span class="exam">(b)&nbsp; <math>g(x)=\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{\pi}</math>&nbsp; for &nbsp;<math style="vertical-align: 0px">x>0.</math>
 
<span class="exam">(b)&nbsp; <math>g(x)=\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{\pi}</math>&nbsp; for &nbsp;<math style="vertical-align: 0px">x>0.</math>
  
<span class="exam">(c)&nbsp; <math>h(x)=\bigg(\frac{3x^2}{x+1}\bigg)^4</math>
+
<span class="exam">(c)&nbsp; <math style="vertical-align: -17px">h(x)=\bigg(\frac{3x^2}{x+1}\bigg)^4</math>
  
== [[009A_Sample Midterm 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[007A_Sample Midterm 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
<span class="exam"> Consider the circle &nbsp;<math>x^2+y^2=25.</math>
+
<span class="exam"> Consider the circle &nbsp;<math style="vertical-align: -4px">x^2+y^2=25.</math>
  
<span class="exam">(a)&nbsp; Find &nbsp;<math style="vertical-align: -16px">\frac{dy}{dx}.</math>
+
<span class="exam">(a)&nbsp; Find &nbsp;<math style="vertical-align: -14px">\frac{dy}{dx}.</math>
  
<span class="exam">(b)&nbsp; Find the equation of the tangent line at the point &nbsp;<math style="vertical-align: -2px">(4,-3).</math>
+
<span class="exam">(b)&nbsp; Find the equation of the tangent line at the point &nbsp;<math style="vertical-align: -4px">(4,-3).</math>
  
== [[009A_Sample Midterm 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
+
== [[007A_Sample Midterm 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> At time &nbsp;<math>t,</math>&nbsp; the position of a body moving along the &nbsp;<math>s-</math>axis is given by &nbsp;<math>s=t^3-6t^2+9t</math> (in meters and seconds).
+
<span class="exam"> At time &nbsp;<math style="vertical-align: -4px">t,</math>&nbsp; the position of a body moving along the &nbsp;<math style="vertical-align: 0px">s-</math>axis is given by &nbsp;<math style="vertical-align: -2px">s=t^3-6t^2+9t</math> (in meters and seconds).
  
 
<span class="exam">(a)&nbsp; Find the times when the velocity of the body is equal to &nbsp;<math style="vertical-align: 0px">0.</math>
 
<span class="exam">(a)&nbsp; Find the times when the velocity of the body is equal to &nbsp;<math style="vertical-align: 0px">0.</math>
  
<span class="exam">(b)&nbsp; Find the body's acceleration each time the velocity is &nbsp;<math style="vertical-align: -2px">0.</math>
+
<span class="exam">(b)&nbsp; Find the body's acceleration each time the velocity is &nbsp;<math style="vertical-align: 0px">0.</math>
  
<span class="exam">(c)&nbsp; Find the total distance traveled by the body from time &nbsp;<math>t=0</math> second to &nbsp;<math style="vertical-align: -2px">t=2</math>&nbsp; seconds.
+
<span class="exam">(c)&nbsp; Find the total distance traveled by the body from time &nbsp;<math style="vertical-align: -1px">t=0</math>&nbsp; second to &nbsp;<math style="vertical-align: -1px">t=2</math>&nbsp; seconds.
  
  
  
 
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''
 
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''

Latest revision as of 17:55, 11 November 2017

This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Find the following limits:

(a) If    find  

(b) Evaluate  

(c) Find  

 Problem 2 

Suppose the size of a population at time    is given by

(a) Determine the size of the population as    We call this the limiting population size.

(b) Show that at time    the size of the population is half its limiting size.

 Problem 3 

Find the derivatives of the following functions. Do not simplify.

(a) 

(b)    for  

(c) 

 Problem 4 

Consider the circle  

(a)  Find  

(b)  Find the equation of the tangent line at the point  

 Problem 5 

At time    the position of a body moving along the  axis is given by   (in meters and seconds).

(a)  Find the times when the velocity of the body is equal to  

(b)  Find the body's acceleration each time the velocity is  

(c)  Find the total distance traveled by the body from time    second to    seconds.


Contributions to this page were made by Kayla Murray