Difference between revisions of "007A Sample Midterm 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 7A for the midterm. An actual test may or may not be similar.''' '''Click on the''' '''<s...")
 
 
(3 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
 
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
  
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
+
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -16px">\lim _{x\rightarrow 0} x^2\cos\bigg(\frac{1}{x}\bigg) </math>
  
 
== [[007A_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[007A_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam">The function &nbsp;<math style="vertical-align: -5px">f(x)=3x^7-8x+2</math>&nbsp; is a polynomial and therefore continuous everywhere.
+
<span class="exam"> Use the definition of the derivative to find &nbsp; <math>\frac{dy}{dx}</math> &nbsp; for the function &nbsp;<math style="vertical-align: -12px">y=\frac{1+x}{3x}.</math>
  
<span class="exam">(a) State the Intermediate Value Theorem.
+
== [[007A_Sample Midterm 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam"> Find the derivatives of the following functions. '''Do not simplify.'''
  
<span class="exam">(b) Use the Intermediate Value Theorem to show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has a zero in the interval &nbsp;<math style="vertical-align: -5px">[0,1].</math>
+
<span class="exam">(a) &nbsp; <math style="vertical-align: -5px">f(x)=x^3(x^{\frac{4}{3}}-1)</math>
  
== [[007A_Sample Midterm 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
<span class="exam">(b) &nbsp; <math style="vertical-align: -14px">f(x)=\frac{x^3+x^{-3}}{1+6x}</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">x>0</math>
<span class="exam"> Use the definition of the derivative to find &nbsp; <math>\frac{dy}{dx}</math> &nbsp; for the function &nbsp;<math style="vertical-align: -12px">y=\frac{1+x}{3x}.</math>
+
 
 +
<span class="exam">(c) &nbsp; <math style="vertical-align: -5px">f(x)=\sqrt{3x^2+5x-7}</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">x>0</math>
  
 
== [[007A_Sample Midterm 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[007A_Sample Midterm 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
+
<span class="exam"> Assume &nbsp;<math style="vertical-align: -5px">N(t)</math>&nbsp; denotes the size of a population at time &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; and that &nbsp;<math style="vertical-align: -5px">N(t)</math>&nbsp; satisfies the equation:
  
<span class="exam">(a) &nbsp; <math style="vertical-align: -5px">f(x)=x^3(x^{\frac{4}{3}}-1)</math>
+
::<math>\frac{dN}{dt}=3N\bigg(1-\frac{N}{20}\bigg).</math>
  
<span class="exam">(b) &nbsp; <math style="vertical-align: -14px">g(x)=\frac{x^3+x^{-3}}{1+6x}</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">x>0</math>
+
<span class="exam"> Let &nbsp;<math style="vertical-align: -16px">f(N)=3N\bigg(1-\frac{N}{20}\bigg),~N\ge 0.</math>&nbsp; Graph &nbsp;<math style="vertical-align: -5px">f(N)</math>&nbsp; as a function of &nbsp;<math style="vertical-align: 0px">N</math>&nbsp; and identify all equilibria. That is, all points where &nbsp;<math style="vertical-align: -15px">\frac{dN}{dt}=0.</math>
  
 
== [[007A_Sample Midterm 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[007A_Sample Midterm 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
+
<span class="exam"> A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?
 
 
<span class="exam">(a) &nbsp; <math style="vertical-align: -5px">f(x)=\tan^3(7x^2+5) </math>
 
 
 
<span class="exam">(b) &nbsp; <math style="vertical-align: -5px">g(x)=\sin(\cos(e^x)) </math>
 
 
 
<span class="exam">(c) &nbsp; <math style="vertical-align: -18px">h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} </math>
 
  
  
  
 
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''
 
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''

Latest revision as of 13:10, 2 November 2017

This is a sample, and is meant to represent the material usually covered in Math 7A for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Evaluate the following limits.

(a) Find  

(b) Find  

(c) Evaluate  

 Problem 2 

Use the definition of the derivative to find     for the function  

 Problem 3 

Find the derivatives of the following functions. Do not simplify.

(a)  

(b)     where  

(c)     where  

 Problem 4 

Assume    denotes the size of a population at time    and that    satisfies the equation:

Let    Graph    as a function of    and identify all equilibria. That is, all points where  

 Problem 5 

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?


Contributions to this page were made by Kayla Murray