Difference between revisions of "007A Sample Midterm 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "text")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
text
+
'''This is a sample, and is meant to represent the material usually covered in Math 7A for the midterm. An actual test may or may not be similar.'''
 +
 
 +
'''Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 +
<div class="noautonum">__TOC__</div>
 +
 
 +
== [[007A_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 +
<span class="exam"> Find the following limits:
 +
 
 +
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -13px">\lim _{x\rightarrow 2} g(x),</math>&nbsp; provided that &nbsp;<math style="vertical-align: -15px">\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]=5.</math>
 +
 
 +
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow 0} \frac{\sin(4x)}{5x} </math>
 +
 
 +
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow -3^+} \frac{x}{x^2-9} </math>
 +
 
 +
== [[007A_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 +
<span class="exam">Consider the following function &nbsp;<math style="vertical-align: -5px"> f:</math>
 +
::<math>f(x) = \left\{
 +
    \begin{array}{lr}
 +
      x^2 &  \text{if }x < 1\\
 +
      \sqrt{x} & \text{if }x \geq 1
 +
    \end{array}
 +
  \right.
 +
</math>
 +
 
 +
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^-} f(x).</math>
 +
 
 +
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^+} f(x).</math>
 +
 
 +
<span class="exam">(c) Find &nbsp;<math style="vertical-align: -13px"> \lim_{x\rightarrow 1} f(x).</math>
 +
 
 +
<span class="exam">(d) Is &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; continuous at &nbsp;<math style="vertical-align: -1px">x=1?</math>&nbsp; Briefly explain.
 +
 
 +
== [[007A_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam"> Let &nbsp;<math style="vertical-align: -5px">y=2x^2-3x+1.</math>
 +
 
 +
<span class="exam">(a) Use the '''definition of the derivative''' to compute &nbsp; <math style="vertical-align: -13px">\frac{dy}{dx}.</math>
 +
 
 +
<span class="exam">(b) Find the equation of the tangent line to &nbsp;<math style="vertical-align: -4px">y=2x^2-3x+1</math>&nbsp; at &nbsp;<math style="vertical-align: -4px">(2,3).</math>
 +
 
 +
== [[007A_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 +
<span class="exam"> Find the derivatives of the following functions. '''Do not simplify.'''
 +
 
 +
<span class="exam">(a) &nbsp; <math style="vertical-align: -5px">f(x)=\sqrt{x}(x^2+2)</math>
 +
 
 +
<span class="exam">(b) &nbsp; <math style="vertical-align: -17px">g(x)=\frac{x+3}{x^{\frac{3}{2}}+2}</math> where <math style="vertical-align: 0px">x>0</math>
 +
 
 +
<span class="exam">(c) &nbsp; <math style="vertical-align: -8px">h(x)=\sqrt{x+\sqrt{x}}</math>
 +
 
 +
== [[007A_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 +
<span class="exam"> To determine drug dosages, doctors estimate a person's body surface area (BSA) (in meters squared) using the formula:
 +
 
 +
::<span class="exam"><math>\text{BSA}=\frac{\sqrt{hm}}{60}</math>
 +
 
 +
<span class="exam">where &nbsp;<math style="vertical-align: 0px">h</math>&nbsp; is the height in centimeters and &nbsp;<math style="vertical-align: 0px">m</math>&nbsp; is the mass in kilograms. Calculate the rate of change of BSA with respect to height for a person of a constant mass of &nbsp;<math style="vertical-align: 0px">m=85.</math>&nbsp; What is the rate at &nbsp;<math style="vertical-align: -1px">h=170</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">h=190?</math>&nbsp; Express your results in the correct units. Does the BSA increase more rapidly with respect to height at lower or higher heights?
 +
 
 +
 
 +
 
 +
 
 +
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''

Latest revision as of 12:50, 2 November 2017

This is a sample, and is meant to represent the material usually covered in Math 7A for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Find the following limits:

(a) Find    provided that  

(b) Find  

(c) Evaluate  

 Problem 2 

Consider the following function  

(a) Find  

(b) Find  

(c) Find  

(d) Is    continuous at    Briefly explain.

 Problem 3 

Let  

(a) Use the definition of the derivative to compute  

(b) Find the equation of the tangent line to    at  

 Problem 4 

Find the derivatives of the following functions. Do not simplify.

(a)  

(b)   where

(c)  

 Problem 5 

To determine drug dosages, doctors estimate a person's body surface area (BSA) (in meters squared) using the formula:

where    is the height in centimeters and    is the mass in kilograms. Calculate the rate of change of BSA with respect to height for a person of a constant mass of    What is the rate at    and    Express your results in the correct units. Does the BSA increase more rapidly with respect to height at lower or higher heights?



Contributions to this page were made by Kayla Murray