Difference between revisions of "Integration by Parts"

From Grad Wiki
Jump to navigation Jump to search
 
(15 intermediate revisions by the same user not shown)
Line 100: Line 100:
 
|Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>&nbsp;
 
|Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>&nbsp;
 
|-
 
|-
|By &nbsp;<math style="vertical-align: 0px">u-</math>substitution, &nbsp;<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math>
+
|To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
|-
 +
|
 +
::<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math>
 
|-
 
|-
 
|Hence, by integration by parts, we get  
 
|Hence, by integration by parts, we get  
Line 139: Line 142:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \big(\frac{1}{x}\big)~dx}\\
+
\displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \bigg(\frac{1}{x}\bigg)~dx}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{x\ln (x)-\int 1~dx}\\
 
& = & \displaystyle{x\ln (x)-\int 1~dx}\\
Line 145: Line 148:
 
& = & \displaystyle{x\ln (x)-x+C.}
 
& = & \displaystyle{x\ln (x)-x+C.}
 
\end{array}</math>
 
\end{array}</math>
 +
|-
 +
|<u>Note:</u> The domain of the function &nbsp;<math style="vertical-align: -1px">\ln x</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">(0,\infty).</math>
 +
|-
 +
|So, this integral is defined for &nbsp;<math style="vertical-align: 0px">x>0.</math>
 
|}
 
|}
  
Line 195: Line 202:
 
We start by letting &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">dv=\frac{1}{x^3}~dx.</math>
 
We start by letting &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">dv=\frac{1}{x^3}~dx.</math>
  
Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{-1}{2x^2}.</math>
+
Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=-\frac{1}{2x^2}.</math>
  
 
So, using integration by parts, we get
 
So, using integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int  \frac{\ln x}{x^3}~dx} & = & \displaystyle{\frac{-\ln x}{2x^2}-\int \frac{-1}{2x^2}\bigg(\frac{1}{x}\bigg)~dx}\\
+
\displaystyle{\int  \frac{\ln x}{x^3}~dx} & = & \displaystyle{-\frac{\ln x}{2x^2}-\int -\frac{1}{2x^2}\bigg(\frac{1}{x}\bigg)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-\ln x}{2x^2}+\int \frac{1}{2x^3}~dx}\\
+
& = & \displaystyle{-\frac{\ln x}{2x^2}+\int \frac{1}{2x^3}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-\ln x}{2x^2}-\frac{1}{4x^2}+C.}
+
& = & \displaystyle{-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
  
::<math>\int \frac{\ln x}{x^3}~dx=\frac{-\ln x}{2x^2}-\frac{1}{4x^2}+C.</math>
+
::<math>\int \frac{\ln x}{x^3}~dx=-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.</math>
  
 
== Exercise 3 ==
 
== Exercise 3 ==
Line 218: Line 225:
 
Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>
 
Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>
  
Also, by &nbsp;<math style="vertical-align: 0px">u-</math>substitution, we have
+
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
  
 
::<math style="vertical-align: 0px">v=\int \sqrt{x+1}~dx=\frac{2}{3}(x+1)^{\frac{3}{2}}.</math>
 
::<math style="vertical-align: 0px">v=\int \sqrt{x+1}~dx=\frac{2}{3}(x+1)^{\frac{3}{2}}.</math>
Line 244: Line 251:
 
Then, &nbsp;<math style="vertical-align: 0px">du=2x~dx.</math>
 
Then, &nbsp;<math style="vertical-align: 0px">du=2x~dx.</math>
  
Also, by &nbsp;<math style="vertical-align: 0px">u-</math>substitution, we have
+
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
  
 
::<math style="vertical-align: 0px">v=\int e^{-2x}~dx=\frac{e^{-2x}}{-2}.</math>
 
::<math style="vertical-align: 0px">v=\int e^{-2x}~dx=\frac{e^{-2x}}{-2}.</math>
Line 251: Line 258:
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2e^{-2x}}{-2}-\int 2x\frac{e^{-2x}}{-2}~dx}\\
+
\displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2e^{-2x}}{-2}-\int 2x\bigg(\frac{e^{-2x}}{-2}\bigg)~dx}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\int xe^{-2x}~dx.}
 
& = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\int xe^{-2x}~dx.}
Line 279: Line 286:
 
We begin by letting &nbsp;<math style="vertical-align: -6px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{3x}~dx.</math>
 
We begin by letting &nbsp;<math style="vertical-align: -6px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{3x}~dx.</math>
  
Then, &nbsp;<math style="vertical-align: -5px">u=2\cos (2x)~dx.</math>
+
Then, &nbsp;<math style="vertical-align: -5px">du=2\cos (2x)~dx.</math>
  
Also, by &nbsp;<math style="vertical-align: 0px">u-</math> substitution, we have
+
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
  
 
::<math style="vertical-align: 0px">v=\int e^{3x}~dx=\frac{e^{3x}}{3}.</math>
 
::<math style="vertical-align: 0px">v=\int e^{3x}~dx=\frac{e^{3x}}{3}.</math>
Line 322: Line 329:
  
 
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math>
 
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math>
 +
 +
For this problem, we use a similar process as Exercise 5.
 +
 +
We use integration by parts twice, which produces the same integral given to us in the problem.
 +
 +
Then, we solve for our integral.
  
 
We begin by letting &nbsp;<math style="vertical-align: -5px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\cos(3x)~dx.</math>
 
We begin by letting &nbsp;<math style="vertical-align: -5px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\cos(3x)~dx.</math>
  
Then, &nbsp;<math style="vertical-align: -5px">u=2\cos (2x)~dx.</math>
+
Then, &nbsp;<math style="vertical-align: -5px">du=2\cos (2x)~dx.</math>
  
Also, by &nbsp;<math style="vertical-align: 0px">u-</math> substitution, we have
+
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
  
 
::<math style="vertical-align: 0px">v=\int \cos(3x)~dx=\frac{1}{3}\sin(3x).</math>
 
::<math style="vertical-align: 0px">v=\int \cos(3x)~dx=\frac{1}{3}\sin(3x).</math>
Line 350: Line 363:
 
\displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \bigg[ \frac{-\cos(2x)\cos(3x)}{3}-\int \frac{2}{3}\sin(2x)\cos(3x)~dx\bigg]}\\
 
\displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \bigg[ \frac{-\cos(2x)\cos(3x)}{3}-\int \frac{2}{3}\sin(2x)\cos(3x)~dx\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}+\int \frac{4}{9}\sin(2x)\cos(3x)~dx.}
+
& = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}+\frac{4}{9}\int \sin(2x)\cos(3x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  

Latest revision as of 12:17, 30 October 2017

Introduction

Let's say we want to integrate

Here, we can compute this antiderivative by using  substitution.

While  substitution is an important integration technique, it will not help us evaluate all integrals.

For example, consider the integral

There is no substitution that will allow us to integrate this integral.

We need another integration technique called integration by parts.

The formula for integration by parts comes from the product rule for derivatives.

Recall from the product rule,

Then, we have

If we solve the last equation for the second integral, we obtain

This formula is the formula for integration by parts.

But, as it is currently stated, it is long and hard to remember.

So, we make a substitution to obtain a nicer formula.

Let    and  

Then,    and  

Plugging these into our formula, we obtain

Warm-Up

Evaluate the following integrals.

1)  

Solution:  
We have two options when doing integration by parts.
We can let    or  
In this case, we let    be the polynomial.
So, we let    and  
Then,    and  
Hence, by integration by parts, we get
Final Answer:  
       

2)  

Solution:  

We have a choice to make.

We can let    or  
In this case, we let    be the polynomial.
So, we let    and  
Then,   
To find    we need to use  substitution. So,
Hence, by integration by parts, we get
where we use   substitution to evaluate the last integral.
Final Answer:  
       

3)  

Solution:  
We have a choice to make.
We can let    or  
In this case, we don't want to let    since we don't know how to integrate    yet.
So, we let    and  
Then,    and  
Hence, by integration by parts, we get
Note: The domain of the function    is  
So, this integral is defined for  
Final Answer:  
       

Exercise 1

Evaluate  

Since we know the antiderivative of  

we let    and  

Then,    and  

Using integration by parts, we get

For the remaining integral, we use  substitution.

Let    Then,  

So, we get

So, we have

Exercise 2

Evaluate  

We start by letting    and  

Then,    and  

So, using integration by parts, we get

So, we have

Exercise 3

Evaluate  

We start by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we get

where we use   substitution to evaluate the last integral.

So, we have

Exercise 4

Evaluate  

We start by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we get

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

So, we have

Exercise 5

Evaluate  

We begin by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we have

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

Now, we have the exact same integral that we had at the beginning of the problem.

So, we add this integral to the other side of the equation.

When we do this, we get

Therefore, we get

Exercise 6

Evaluate  

For this problem, we use a similar process as Exercise 5.

We use integration by parts twice, which produces the same integral given to us in the problem.

Then, we solve for our integral.

We begin by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we have

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

Now, we have the exact same integral that we had at the beginning of the problem.

So, we subtract this integral to the other side of the equation.

When we do this, we get

Therefore, we get