Difference between revisions of "Integration by Parts"

From Grad Wiki
Jump to navigation Jump to search
 
(21 intermediate revisions by the same user not shown)
Line 25: Line 25:
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f(x)g(x)} & = & \displaystyle{\int f'(x)g(x)+f(x)g'(x)~dx}\\
+
\displaystyle{f(x)g(x)} & = & \displaystyle{\int (f(x)g(x))'~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int f'(x)g(x)+f(x)g'(x)~dx}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\int f'(x)g(x)~dx+\int f(x)g'(x)~dx.}
 
& = & \displaystyle{\int f'(x)g(x)~dx+\int f(x)g'(x)~dx.}
Line 98: Line 100:
 
|Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>&nbsp;
 
|Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>&nbsp;
 
|-
 
|-
|By &nbsp;<math style="vertical-align: 0px">u-</math>substitution, &nbsp;<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math>
+
|To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
|-
 +
|
 +
::<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math>
 
|-
 
|-
 
|Hence, by integration by parts, we get  
 
|Hence, by integration by parts, we get  
Line 137: Line 142:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \big(\frac{1}{x}\big)~dx}\\
+
\displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \bigg(\frac{1}{x}\bigg)~dx}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{x\ln (x)-\int 1~dx}\\
 
& = & \displaystyle{x\ln (x)-\int 1~dx}\\
Line 143: Line 148:
 
& = & \displaystyle{x\ln (x)-x+C.}
 
& = & \displaystyle{x\ln (x)-x+C.}
 
\end{array}</math>
 
\end{array}</math>
 +
|-
 +
|<u>Note:</u> The domain of the function &nbsp;<math style="vertical-align: -1px">\ln x</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">(0,\infty).</math>
 +
|-
 +
|So, this integral is defined for &nbsp;<math style="vertical-align: 0px">x>0.</math>
 
|}
 
|}
  
Line 193: Line 202:
 
We start by letting &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">dv=\frac{1}{x^3}~dx.</math>
 
We start by letting &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">dv=\frac{1}{x^3}~dx.</math>
  
Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{-1}{2x^2}.</math>
+
Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=-\frac{1}{2x^2}.</math>
  
 
So, using integration by parts, we get
 
So, using integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int  \frac{\ln x}{x^3}~dx} & = & \displaystyle{\frac{-\ln x}{2x^2}-\int \frac{-1}{2x^2}\big(\frac{1}{x}\big)~dx}\\
+
\displaystyle{\int  \frac{\ln x}{x^3}~dx} & = & \displaystyle{-\frac{\ln x}{2x^2}-\int -\frac{1}{2x^2}\bigg(\frac{1}{x}\bigg)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-\ln x}{2x^2}+\int \frac{1}{2x^3}~dx}\\
+
& = & \displaystyle{-\frac{\ln x}{2x^2}+\int \frac{1}{2x^3}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-\ln x}{2x^2}-\frac{1}{4x^2}+C.}
+
& = & \displaystyle{-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
  
::<math>\int \frac{\ln x}{x^3}~dx=\frac{-\ln x}{2x^2}-\frac{1}{4x^2}+C.</math>
+
::<math>\int \frac{\ln x}{x^3}~dx=-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.</math>
  
 
== Exercise 3 ==
 
== Exercise 3 ==
 +
Evaluate &nbsp;<math style="vertical-align: -13px">\int x\sqrt{x+1}~dx.</math>
 +
 +
We start by letting &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">dv=\sqrt{x+1}~dx.</math>
  
Evaluate &nbsp;<math style="vertical-align: -16px">\int x\sec^2 x~dx.</math>
+
Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>
  
Using the Quotient Rule, we have
+
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
  
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math>
+
::<math style="vertical-align: 0px">v=\int \sqrt{x+1}~dx=\frac{2}{3}(x+1)^{\frac{3}{2}}.</math>
  
Now, we need to use the Product Rule. So, we have
+
Hence, by integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\
+
\displaystyle{\int x\sqrt{x+1}~dx} & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\int \frac{2}{3}(x+1)^{\frac{3}{2}}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}
+
& = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C,}
 
\end{array}</math>
 
\end{array}</math>
  
So, we get
+
where we use &nbsp;<math style="vertical-align: 0px">u-</math> substitution to evaluate the last integral.
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math>
+
 
 +
So, we have
 +
 
 +
::<math>\int x\sqrt{x+1}~dx=\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C.</math>
  
 
== Exercise 4 ==
 
== Exercise 4 ==
  
Evaluate  &nbsp;<math style="vertical-align: -14px">\int x\sqrt{x+1}~dx.</math>
+
Evaluate  &nbsp;<math style="vertical-align: -13px">\int x^2e^{-2x}~dx.</math>
 +
 
 +
We start by letting &nbsp;<math style="vertical-align: 0px">u=x^2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-2x}~dx.</math>
  
First, using the Quotient Rule, we have
+
Then, &nbsp;<math style="vertical-align: 0px">du=2x~dx.</math>
 +
 
 +
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
 
 +
::<math style="vertical-align: 0px">v=\int e^{-2x}~dx=\frac{e^{-2x}}{-2}.</math>
 +
 
 +
Hence, by integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
+
\displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2e^{-2x}}{-2}-\int 2x\bigg(\frac{e^{-2x}}{-2}\bigg)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\int xe^{-2x}~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule. So, we have
+
Now, we need to use integration by parts a second time.
 +
 
 +
Let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-2x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: 0px">du=dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 +
 
 +
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
+
\displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2 e^{-2x} }{-2}+\frac{x e^{-2x} }{-2}-\int \frac{e^{-2x}}{-2}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\frac{xe^{-2x}}{-2}+\frac{e^{-2x}}{-4}+C.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>
+
::<math>\int x^2e^{-2x}~dx=\frac{x^2e^{-2x}}{-2}+\frac{xe^{-2x}}{-2}+\frac{e^{-2x}}{-4}+C.</math>
  
 
== Exercise 5 ==
 
== Exercise 5 ==
  
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \frac{\ln x}{x^3}~dx.</math>
+
Evaluate  &nbsp;<math style="vertical-align: -13px">\int e^{3x}\sin(2x)~dx.</math>
  
First, using the Quotient Rule, we have
+
We begin by letting &nbsp;<math style="vertical-align: -6px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{3x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=2\cos (2x)~dx.</math>
 +
 
 +
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
 
 +
::<math style="vertical-align: 0px">v=\int e^{3x}~dx=\frac{e^{3x}}{3}.</math>
 +
 
 +
Hence, by integration by parts, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
+
\displaystyle{\int e^{3x} \sin(2x)~dx} & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\int \frac{2}{3}\cos(2x)e^{3x}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2}{3} \int \cos(2x)e^{3x}~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule. So, we have
+
Now, we need to use integration by parts a second time.
 +
 
 +
Let &nbsp;<math style="vertical-align: -5px">u=\cos (2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{3x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=-2\sin(2x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{e^{3x}}{3}.</math>
 +
 
 +
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
+
\displaystyle{\int e^{3x} \sin(2x)~dx} & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2}{3} \bigg[ \frac{\cos(2x)e^{3x}}{3}+\int \frac{2}{3}\sin(2x)e^{3x}~dx\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}-\frac{4}{9}\int e^{3x}\sin(2x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
So, we have
+
Now, we have the exact same integral that we had at the beginning of the problem.
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>
+
 
 +
So, we add this integral to the other side of the equation.
 +
 
 +
When we do this, we get
 +
 
 +
::<math>\frac{13}{9} \int e^{3x}\sin(2x)~dx = \frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}.</math>
 +
 
 +
Therefore, we get
 +
 
 +
::<math> \int e^{3x}\sin(2x)~dx = \frac{9}{13}\bigg(\frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}\bigg)+C.</math>
  
 
== Exercise 6 ==
 
== Exercise 6 ==
Line 278: Line 330:
 
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math>
 
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math>
  
First, using the Quotient Rule, we have
+
For this problem, we use a similar process as Exercise 5.
 +
 
 +
We use integration by parts twice, which produces the same integral given to us in the problem.
 +
 
 +
Then, we solve for our integral.
 +
 
 +
We begin by letting &nbsp;<math style="vertical-align: -5px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\cos(3x)~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=2\cos (2x)~dx.</math>
 +
 
 +
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
 
 +
::<math style="vertical-align: 0px">v=\int \cos(3x)~dx=\frac{1}{3}\sin(3x).</math>
 +
 
 +
Hence, by integration by parts, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
+
\displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\int \frac{2}{3}\cos(2x)\sin(3x)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \int \cos(2x)\sin(3x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule. So, we have
+
Now, we need to use integration by parts a second time.
 +
 
 +
Let &nbsp;<math style="vertical-align: -5px">u=\cos (2x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\sin(3x)~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=-2\sin(2x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{-\cos(3x)}{3}.</math>
 +
 
 +
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
+
\displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \bigg[ \frac{-\cos(2x)\cos(3x)}{3}-\int \frac{2}{3}\sin(2x)\cos(3x)~dx\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}+\frac{4}{9}\int \sin(2x)\cos(3x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
So, we have
+
Now, we have the exact same integral that we had at the beginning of the problem.
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>
+
 
 +
So, we subtract this integral to the other side of the equation.
 +
 
 +
When we do this, we get
 +
 
 +
::<math>\frac{5}{9} \int \sin(2x)\cos(3x)~dx = \frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}.</math>
 +
 
 +
Therefore, we get
 +
 
 +
::<math> \int e^{3x}\sin(2x)~dx = \frac{9}{5}\bigg(\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}\bigg)+C.</math>

Latest revision as of 12:17, 30 October 2017

Introduction

Let's say we want to integrate

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2e^{x^3}~dx.}

Here, we can compute this antiderivative by using  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution.

While  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution is an important integration technique, it will not help us evaluate all integrals.

For example, consider the integral

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int xe^x~dx.}

There is no substitution that will allow us to integrate this integral.

We need another integration technique called integration by parts.

The formula for integration by parts comes from the product rule for derivatives.

Recall from the product rule,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x)g(x))'=f'(x)g(x)+f(x)g'(x).}

Then, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f(x)g(x)} & = & \displaystyle{\int (f(x)g(x))'~dx}\\ &&\\ & = & \displaystyle{\int f'(x)g(x)+f(x)g'(x)~dx}\\ &&\\ & = & \displaystyle{\int f'(x)g(x)~dx+\int f(x)g'(x)~dx.} \end{array}}

If we solve the last equation for the second integral, we obtain

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int f(x)g'(x)~dx = f(x)g(x)-\int f'(x)g(x)~dx.}

This formula is the formula for integration by parts.

But, as it is currently stated, it is long and hard to remember.

So, we make a substitution to obtain a nicer formula.

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=f(x)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=g'(x)~dx.}

Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=f'(x)~dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=g(x).}

Plugging these into our formula, we obtain

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int u~dv=uv-\int v~du.}

Warm-Up

Evaluate the following integrals.

1)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int xe^x~dx}

Solution:  
We have two options when doing integration by parts.
We can let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x}   or  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=e^x.}
In this case, we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u}   be the polynomial.
So, we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^x~dx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x.}
Hence, by integration by parts, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int xe^x~dx} & = & \displaystyle{xe^x-\int e^x~dx}\\ &&\\ & = & \displaystyle{xe^x-e^x+C.} \end{array}}
Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xe^x-e^x+C}

2)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x\cos (2x)~dx}

Solution:  

We have a choice to make.

We can let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x}   or  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(2x).}
In this case, we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u}   be the polynomial.
So, we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\cos(2x)~dx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx.}  
To find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v,}   we need to use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution. So,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).}
Hence, by integration by parts, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int x\cos(2x)~dx} & = & \displaystyle{\frac{1}{2}x\sin(2x)-\int \frac{1}{2}\sin(2x)~dx}\\ &&\\ & = & \displaystyle{\frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C,} \end{array}}
where we use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution to evaluate the last integral.
Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C}

3)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \ln x~dx}

Solution:  
We have a choice to make.
We can let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x}   or  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\ln x~dx.}
In this case, we don't want to let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\ln x~dx}   since we don't know how to integrate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln x}   yet.
So, we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=1~dx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}~dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=x.}
Hence, by integration by parts, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \bigg(\frac{1}{x}\bigg)~dx}\\ &&\\ & = & \displaystyle{x\ln (x)-\int 1~dx}\\ &&\\ & = & \displaystyle{x\ln (x)-x+C.} \end{array}}
Note: The domain of the function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln x}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,\infty).}
So, this integral is defined for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0.}
Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ln (x)-x+C}

Exercise 1

Evaluate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x \sec^2 x~dx.}

Since we know the antiderivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec^2 x,}

we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\sec^2 x~dx.}

Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\tan x.}

Using integration by parts, we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int x \sec^2 x~dx} & = & \displaystyle{x\tan x -\int \tan x~dx}\\ &&\\ & = & \displaystyle{x\tan x -\int \frac{\sin x}{\cos x}~dx.} \end{array}}

For the remaining integral, we use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution.

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos x.}   Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin x~dx.}

So, we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int x \sec^2 x~dx} & = & \displaystyle{x\tan x +\int \frac{1}{u}~du}\\ &&\\ & = & \displaystyle{x\tan x + \ln |u|+C}\\ &&\\ & = & \displaystyle{x\tan x+ \ln |\cos x|+C.} \end{array}}

So, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x \sec^2 x~dx=x\tan x+ \ln |\cos x|+C.}

Exercise 2

Evaluate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\ln x}{x^3}~dx.}

We start by letting  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\frac{1}{x^3}~dx.}

Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}~dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-\frac{1}{2x^2}.}

So, using integration by parts, we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{\ln x}{x^3}~dx} & = & \displaystyle{-\frac{\ln x}{2x^2}-\int -\frac{1}{2x^2}\bigg(\frac{1}{x}\bigg)~dx}\\ &&\\ & = & \displaystyle{-\frac{\ln x}{2x^2}+\int \frac{1}{2x^3}~dx}\\ &&\\ & = & \displaystyle{-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.} \end{array}}

So, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\ln x}{x^3}~dx=-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.}

Exercise 3

Evaluate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x\sqrt{x+1}~dx.}

We start by letting  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\sqrt{x+1}~dx.}

Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx.}

To find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v,}   we need to use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution. So,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\int \sqrt{x+1}~dx=\frac{2}{3}(x+1)^{\frac{3}{2}}.}

Hence, by integration by parts, we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int x\sqrt{x+1}~dx} & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\int \frac{2}{3}(x+1)^{\frac{3}{2}}~dx}\\ &&\\ & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C,} \end{array}}

where we use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution to evaluate the last integral.

So, we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x\sqrt{x+1}~dx=\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C.}

Exercise 4

Evaluate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2e^{-2x}~dx.}

We start by letting  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x^2}   and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we get

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

So, we have

Exercise 5

Evaluate  

We begin by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we have

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

Now, we have the exact same integral that we had at the beginning of the problem.

So, we add this integral to the other side of the equation.

When we do this, we get

Therefore, we get

Exercise 6

Evaluate  

For this problem, we use a similar process as Exercise 5.

We use integration by parts twice, which produces the same integral given to us in the problem.

Then, we solve for our integral.

We begin by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we have

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

Now, we have the exact same integral that we had at the beginning of the problem.

So, we subtract this integral to the other side of the equation.

When we do this, we get

Therefore, we get