Difference between revisions of "Integration by Parts"

From Grad Wiki
Jump to navigation Jump to search
 
(22 intermediate revisions by the same user not shown)
Line 25: Line 25:
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f(x)g(x)} & = & \displaystyle{\int f'(x)g(x)+f(x)g'(x)~dx}\\
+
\displaystyle{f(x)g(x)} & = & \displaystyle{\int (f(x)g(x))'~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int f'(x)g(x)+f(x)g'(x)~dx}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\int f'(x)g(x)~dx+\int f(x)g'(x)~dx.}
 
& = & \displaystyle{\int f'(x)g(x)~dx+\int f(x)g'(x)~dx.}
Line 98: Line 100:
 
|Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>&nbsp;
 
|Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>&nbsp;
 
|-
 
|-
|By &nbsp;<math style="vertical-align: 0px">u-</math>substitution, &nbsp;<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math>
+
|To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
|-
 +
|
 +
::<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math>
 
|-
 
|-
 
|Hence, by integration by parts, we get  
 
|Hence, by integration by parts, we get  
Line 137: Line 142:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \big(\frac{1}{x}\big)~dx}\\
+
\displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \bigg(\frac{1}{x}\bigg)~dx}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{x\ln (x)-\int 1~dx}\\
 
& = & \displaystyle{x\ln (x)-\int 1~dx}\\
Line 143: Line 148:
 
& = & \displaystyle{x\ln (x)-x+C.}
 
& = & \displaystyle{x\ln (x)-x+C.}
 
\end{array}</math>
 
\end{array}</math>
 +
|-
 +
|<u>Note:</u> The domain of the function &nbsp;<math style="vertical-align: -1px">\ln x</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">(0,\infty).</math>
 +
|-
 +
|So, this integral is defined for &nbsp;<math style="vertical-align: 0px">x>0.</math>
 
|}
 
|}
  
Line 189: Line 198:
 
== Exercise 2 ==
 
== Exercise 2 ==
  
Evaluate &nbsp;<math style="vertical-align: -5px">\int e^{3x}\sin (2x)~dx.</math>
+
Evaluate &nbsp;<math style="vertical-align: -13px">\int \frac{\ln x}{x^3}~dx.</math>
  
Notice that the function &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is the product of three functions.  
+
We start by letting &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">dv=\frac{1}{x^3}~dx.</math>
  
We start by grouping two of the functions together. So, we have &nbsp;<math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math>
+
Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=-\frac{1}{2x^2}.</math>
  
Using the Product Rule, we get
+
So, using integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\
+
\displaystyle{\int  \frac{\ln x}{x^3}~dx} & = & \displaystyle{-\frac{\ln x}{2x^2}-\int -\frac{1}{2x^2}\bigg(\frac{1}{x}\bigg)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.}
+
& = & \displaystyle{-\frac{\ln x}{2x^2}+\int \frac{1}{2x^3}~dx}\\
\end{array}</math>
 
 
 
Now, we need to use the Product Rule again. So,
 
 
 
::<math>\begin{array}{rcl}
 
\displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\
 
 
&&\\
 
&&\\
& = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.}
+
& = & \displaystyle{-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math>
 
  
But, there is another way to do this problem. Notice
+
::<math>\int \frac{\ln x}{x^3}~dx=-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.</math>
  
::<math>\begin{array}{rcl}
+
== Exercise 3 ==
\displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\
+
Evaluate &nbsp;<math style="vertical-align: -13px">\int x\sqrt{x+1}~dx.</math>
&&\\
 
& = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\
 
&&\\
 
& = & \displaystyle{2x\tan x.}
 
\end{array}</math>
 
 
 
Now, you would only need to use the Product Rule once instead of twice.
 
  
== Exercise 3 ==
+
We start by letting &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">dv=\sqrt{x+1}~dx.</math>
  
Evaluate &nbsp;<math style="vertical-align: -16px">\int x\sec^2 x~dx.</math>
+
Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>
  
Using the Quotient Rule, we have
+
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
  
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math>
+
::<math style="vertical-align: 0px">v=\int \sqrt{x+1}~dx=\frac{2}{3}(x+1)^{\frac{3}{2}}.</math>
  
Now, we need to use the Product Rule. So, we have
+
Hence, by integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\
+
\displaystyle{\int x\sqrt{x+1}~dx} & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\int \frac{2}{3}(x+1)^{\frac{3}{2}}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}
+
& = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C,}
 
\end{array}</math>
 
\end{array}</math>
  
So, we get
+
where we use &nbsp;<math style="vertical-align: 0px">u-</math> substitution to evaluate the last integral.
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math>
+
 
 +
So, we have
 +
 
 +
::<math>\int x\sqrt{x+1}~dx=\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C.</math>
  
 
== Exercise 4 ==
 
== Exercise 4 ==
  
Evaluate  &nbsp;<math style="vertical-align: -14px">\int x\sqrt{x+1}~dx.</math>
+
Evaluate  &nbsp;<math style="vertical-align: -13px">\int x^2e^{-2x}~dx.</math>
 +
 
 +
We start by letting &nbsp;<math style="vertical-align: 0px">u=x^2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-2x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: 0px">du=2x~dx.</math>
 +
 
 +
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
 
 +
::<math style="vertical-align: 0px">v=\int e^{-2x}~dx=\frac{e^{-2x}}{-2}.</math>
  
First, using the Quotient Rule, we have
+
Hence, by integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
+
\displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2e^{-2x}}{-2}-\int 2x\bigg(\frac{e^{-2x}}{-2}\bigg)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\int xe^{-2x}~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule. So, we have
+
Now, we need to use integration by parts a second time.
 +
 
 +
Let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-2x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: 0px">du=dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 +
 
 +
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
+
\displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2 e^{-2x} }{-2}+\frac{x e^{-2x} }{-2}-\int \frac{e^{-2x}}{-2}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\frac{xe^{-2x}}{-2}+\frac{e^{-2x}}{-4}+C.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>
+
::<math>\int x^2e^{-2x}~dx=\frac{x^2e^{-2x}}{-2}+\frac{xe^{-2x}}{-2}+\frac{e^{-2x}}{-4}+C.</math>
  
 
== Exercise 5 ==
 
== Exercise 5 ==
  
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \frac{\ln x}{x^3}~dx.</math>
+
Evaluate  &nbsp;<math style="vertical-align: -13px">\int e^{3x}\sin(2x)~dx.</math>
  
First, using the Quotient Rule, we have
+
We begin by letting &nbsp;<math style="vertical-align: -6px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{3x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=2\cos (2x)~dx.</math>
 +
 
 +
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
 
 +
::<math style="vertical-align: 0px">v=\int e^{3x}~dx=\frac{e^{3x}}{3}.</math>
 +
 
 +
Hence, by integration by parts, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
+
\displaystyle{\int e^{3x} \sin(2x)~dx} & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\int \frac{2}{3}\cos(2x)e^{3x}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2}{3} \int \cos(2x)e^{3x}~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule. So, we have
+
Now, we need to use integration by parts a second time.
 +
 
 +
Let &nbsp;<math style="vertical-align: -5px">u=\cos (2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{3x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=-2\sin(2x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{e^{3x}}{3}.</math>
 +
 
 +
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
+
\displaystyle{\int e^{3x} \sin(2x)~dx} & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2}{3} \bigg[ \frac{\cos(2x)e^{3x}}{3}+\int \frac{2}{3}\sin(2x)e^{3x}~dx\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}-\frac{4}{9}\int e^{3x}\sin(2x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
So, we have
+
Now, we have the exact same integral that we had at the beginning of the problem.
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>
+
 
 +
So, we add this integral to the other side of the equation.
 +
 
 +
When we do this, we get
 +
 
 +
::<math>\frac{13}{9} \int e^{3x}\sin(2x)~dx = \frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}.</math>
 +
 
 +
Therefore, we get
 +
 
 +
::<math> \int e^{3x}\sin(2x)~dx = \frac{9}{13}\bigg(\frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}\bigg)+C.</math>
  
 
== Exercise 6 ==
 
== Exercise 6 ==
Line 295: Line 330:
 
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math>
 
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math>
  
First, using the Quotient Rule, we have
+
For this problem, we use a similar process as Exercise 5.
 +
 
 +
We use integration by parts twice, which produces the same integral given to us in the problem.
 +
 
 +
Then, we solve for our integral.
 +
 
 +
We begin by letting &nbsp;<math style="vertical-align: -5px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\cos(3x)~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=2\cos (2x)~dx.</math>
 +
 
 +
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
 
 +
::<math style="vertical-align: 0px">v=\int \cos(3x)~dx=\frac{1}{3}\sin(3x).</math>
 +
 
 +
Hence, by integration by parts, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
+
\displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\int \frac{2}{3}\cos(2x)\sin(3x)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \int \cos(2x)\sin(3x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule. So, we have
+
Now, we need to use integration by parts a second time.
 +
 
 +
Let &nbsp;<math style="vertical-align: -5px">u=\cos (2x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\sin(3x)~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=-2\sin(2x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{-\cos(3x)}{3}.</math>
 +
 
 +
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
+
\displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \bigg[ \frac{-\cos(2x)\cos(3x)}{3}-\int \frac{2}{3}\sin(2x)\cos(3x)~dx\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}+\frac{4}{9}\int \sin(2x)\cos(3x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
So, we have
+
Now, we have the exact same integral that we had at the beginning of the problem.
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>
+
 
 +
So, we subtract this integral to the other side of the equation.
 +
 
 +
When we do this, we get
 +
 
 +
::<math>\frac{5}{9} \int \sin(2x)\cos(3x)~dx = \frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}.</math>
 +
 
 +
Therefore, we get
 +
 
 +
::<math> \int e^{3x}\sin(2x)~dx = \frac{9}{5}\bigg(\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}\bigg)+C.</math>

Latest revision as of 12:17, 30 October 2017

Introduction

Let's say we want to integrate

Here, we can compute this antiderivative by using  substitution.

While  substitution is an important integration technique, it will not help us evaluate all integrals.

For example, consider the integral

There is no substitution that will allow us to integrate this integral.

We need another integration technique called integration by parts.

The formula for integration by parts comes from the product rule for derivatives.

Recall from the product rule,

Then, we have

If we solve the last equation for the second integral, we obtain

This formula is the formula for integration by parts.

But, as it is currently stated, it is long and hard to remember.

So, we make a substitution to obtain a nicer formula.

Let    and  

Then,    and  

Plugging these into our formula, we obtain

Warm-Up

Evaluate the following integrals.

1)  

Solution:  
We have two options when doing integration by parts.
We can let    or  
In this case, we let    be the polynomial.
So, we let    and  
Then,    and  
Hence, by integration by parts, we get
Final Answer:  
       

2)  

Solution:  

We have a choice to make.

We can let    or  
In this case, we let    be the polynomial.
So, we let    and  
Then,   
To find    we need to use  substitution. So,
Hence, by integration by parts, we get
where we use   substitution to evaluate the last integral.
Final Answer:  
       

3)  

Solution:  
We have a choice to make.
We can let    or  
In this case, we don't want to let    since we don't know how to integrate    yet.
So, we let    and  
Then,    and  
Hence, by integration by parts, we get
Note: The domain of the function    is  
So, this integral is defined for  
Final Answer:  
       

Exercise 1

Evaluate  

Since we know the antiderivative of  

we let    and  

Then,    and  

Using integration by parts, we get

For the remaining integral, we use  substitution.

Let    Then,  

So, we get

So, we have

Exercise 2

Evaluate  

We start by letting    and  

Then,    and  

So, using integration by parts, we get

So, we have

Exercise 3

Evaluate  

We start by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we get

where we use   substitution to evaluate the last integral.

So, we have

Exercise 4

Evaluate  

We start by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we get

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

So, we have

Exercise 5

Evaluate  

We begin by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we have

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

Now, we have the exact same integral that we had at the beginning of the problem.

So, we add this integral to the other side of the equation.

When we do this, we get

Therefore, we get

Exercise 6

Evaluate  

For this problem, we use a similar process as Exercise 5.

We use integration by parts twice, which produces the same integral given to us in the problem.

Then, we solve for our integral.

We begin by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we have

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

Now, we have the exact same integral that we had at the beginning of the problem.

So, we subtract this integral to the other side of the equation.

When we do this, we get

Therefore, we get