Difference between revisions of "Integration by Parts"

From Grad Wiki
Jump to navigation Jump to search
 
(28 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
::<math>\int x^2e^{x^3}~dx.</math>
 
::<math>\int x^2e^{x^3}~dx.</math>
  
Here, we can compute this antiderivative by using &nbsp;<math>u-</math>substitution.
+
Here, we can compute this antiderivative by using &nbsp;<math style="vertical-align: 0px">u-</math>substitution.
  
While &nbsp;<math>u-</math> is an important integration technique, it will not help us evaluate all integrals.
+
While &nbsp;<math style="vertical-align: 0px">u-</math>substitution is an important integration technique, it will not help us evaluate all integrals.
  
For example, consider the integral &nbsp;<math>\int xe^x~dx.</math>
+
For example, consider the integral  
 +
 
 +
::<math>\int xe^x~dx.</math>
  
 
There is no substitution that will allow us to integrate this integral.  
 
There is no substitution that will allow us to integrate this integral.  
Line 16: Line 18:
 
The formula for integration by parts comes from the product rule for derivatives.
 
The formula for integration by parts comes from the product rule for derivatives.
  
Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule.
+
Recall from the product rule,
  
For example, if &nbsp;<math style="vertical-align: -5px">f(x)=x^3+2x^2+5x+3,</math>&nbsp; then &nbsp;<math style="vertical-align: -5px">f'(x)=3x^2+4x+5.</math>
+
::<math>(f(x)g(x))'=f'(x)g(x)+f(x)g'(x).</math>
  
But, what about more <em>complicated functions</em>?
+
Then, we have
  
For example, what is &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; when &nbsp;<math style="vertical-align: -5px">f(x)=\sin x \cos x?</math>
+
::<math>\begin{array}{rcl}
 +
\displaystyle{f(x)g(x)} & = & \displaystyle{\int (f(x)g(x))'~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int f'(x)g(x)+f(x)g'(x)~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int f'(x)g(x)~dx+\int f(x)g'(x)~dx.}
 +
\end{array}</math>
  
Or what about &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; when &nbsp;<math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math>
+
If we solve the last equation for the second integral, we obtain
  
Notice &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is a product, and &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
+
::<math>\int f(x)g'(x)~dx = f(x)g(x)-\int f'(x)g(x)~dx.</math>
  
'''Product Rule'''
+
This formula is the formula for integration by parts.
  
Let &nbsp;<math style="vertical-align: -5px">h(x)=f(x)g(x).</math>&nbsp; Then,
+
But, as it is currently stated, it is long and hard to remember.  
  
::<math>h'(x)=f(x)g'(x)+f'(x)g(x).</math>
+
So, we make a substitution to obtain a nicer formula.  
  
'''Quotient Rule'''
+
Let &nbsp;<math style="vertical-align: -5px">u=f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=g'(x)~dx.</math>
  
Let &nbsp;<math style="vertical-align: -19px">h(x)=\frac{f(x)}{g(x)}.</math>&nbsp; Then,
+
Then, &nbsp;<math style="vertical-align: -5px">du=f'(x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">v=g(x).</math>
  
::<math>h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.</math>
+
Plugging these into our formula, we obtain
 +
 
 +
::<math>\int u~dv=uv-\int v~du.</math>
  
 
==Warm-Up==
 
==Warm-Up==
Calculate &nbsp;<math style="vertical-align: -5px">f'(x).</math>
+
Evaluate the following integrals.
  
'''1)''' &nbsp; <math style="vertical-align: -7px">f(x)=(x^2+x+1)(x^3+2x^2+4)</math>
+
'''1)''' &nbsp; <math style="vertical-align: -13px">\int xe^x~dx</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|Using the Product Rule, we have  
+
|We have two options when doing integration by parts.  
|-
 
|
 
::<math>f'(x)=(x^2+x+1)(x^3+2x^2+4)'+(x^2+x+1)'(x^3+2x^2+4).</math>
 
|-
 
|Then, using the Power Rule, we have
 
 
|-
 
|-
|
+
|We can let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; or &nbsp;<math style="vertical-align: 0px">u=e^x.</math>
::<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4).</math>
 
 
|-
 
|-
 +
|In this case, we let &nbsp;<math style="vertical-align: 0px">u</math>&nbsp; be the polynomial.
 
|-
 
|-
|<u>NOTE:</u> It is not necessary to use the Product Rule to calculate the derivative of this function.
+
|So, we let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^x~dx.</math>
 
|-
 
|-
|You can distribute the terms and then use the Power Rule.
+
|Then, &nbsp;<math style="vertical-align: 0px">du=dx</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
|In this case, we have
+
|Hence, by integration by parts, we get
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f(x)} & = & \displaystyle{(x^2+x+1)(x^3+2x^2+4)}\\
+
\displaystyle{\int xe^x~dx} & = & \displaystyle{xe^x-\int e^x~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{x^2(x^3+2x^2+4)+x(x^3+2x^2+4)+1(x^3+2x^2+4)}\\
+
& = & \displaystyle{xe^x-e^x+C.}
&&\\
 
& = & \displaystyle{x^5+2x^4+4x^2+x^4+2x^3+4x+x^3+2x^2+4} \\
 
&&\\
 
& = & \displaystyle{x^5+3x^4+3x^3+6x^2+4x+4.}
 
 
\end{array}</math>
 
\end{array}</math>
|-
 
|Now, using the Power Rule, we get
 
|-
 
|
 
::<math>f'(x)=5x^4+12x^3+9x^2+12x+4.</math>
 
|-
 
|In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
 
 
|}
 
|}
  
Line 87: Line 81:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>xe^x-e^x+C</math>
|-
 
|or equivalently
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=x^5+3x^4+3x^3+6x^2+4x+4</math>
 
 
|}
 
|}
  
'''2)''' &nbsp; <math style="vertical-align: -14px">f(x)=\frac{x^2+x^3}{x}</math>
+
'''2)''' &nbsp; <math style="vertical-align: -14px">\int x\cos (2x)~dx</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
Line 100: Line 90:
 
|-
 
|-
 
|
 
|
Using the Quotient Rule, we have
+
We have a choice to make.
 
|-
 
|-
|
+
|We can let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; or &nbsp;<math style="vertical-align: -5px">u=\cos(2x).</math>
::<math>f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.</math>
 
 
|-
 
|-
|Then, using the Power Rule, we have
+
|In this case, we let &nbsp;<math style="vertical-align: 0px">u</math>&nbsp; be the polynomial.
 
|-
 
|-
|
+
|So, we let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\cos(2x)~dx.</math>
::<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.</math>
 
 
|-
 
|-
|<u>NOTE:</u> It is not necessary to use the Quotient Rule to calculate the derivative of this function.
+
|Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>&nbsp;
 
|-
 
|-
|You can divide and then use the Power Rule.
+
|To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 
|-
 
|-
|In this case, we have
+
|
 +
::<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math>
 +
|-
 +
|Hence, by integration by parts, we get
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\
+
\displaystyle{\int x\cos(2x)~dx} & = & \displaystyle{\frac{1}{2}x\sin(2x)-\int \frac{1}{2}\sin(2x)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\
+
& = & \displaystyle{\frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C,}
&&\\
 
& = & \displaystyle{x+x^2.} \\
 
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Now, using the Power Rule, we get
+
|where we use &nbsp;<math style="vertical-align: 0px">u-</math> substitution to evaluate the last integral.
|-
 
|
 
::<math>f'(x)=1+2x.</math>
 
 
|}
 
|}
  
Line 134: Line 120:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
||&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C</math>
|-
 
|or equivalently
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=1+2x</math>
 
 
 
|-
 
 
|}
 
|}
  
'''3)''' &nbsp; <math style="vertical-align: -14px">f(x)=\frac{\sin x}{\cos x}</math>
+
'''3)''' &nbsp; <math style="vertical-align: -14px">\int \ln x~dx</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|Using the Quotient Rule, we get
+
|We have a choice to make.
 +
|-
 +
|We can let &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; or &nbsp;<math style="vertical-align: -1px">dv=\ln x~dx.</math>
 +
|-
 +
|In this case, we don't want to let &nbsp;<math style="vertical-align: -1px">dv=\ln x~dx</math>&nbsp; since we don't know how to integrate &nbsp;<math style="vertical-align: -1px">\ln x</math>&nbsp; yet.
 +
|-
 +
|So, we let &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">dv=1~dx.</math>
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=x.</math>
 +
|-
 +
|Hence, by integration by parts, we get  
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\
+
\displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \bigg(\frac{1}{x}\bigg)~dx}\\
&&\\
 
& = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\
 
&&\\
 
& = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\
 
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{\cos^2 x}}\\
+
& = & \displaystyle{x\ln (x)-\int 1~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\sec^2 x}
+
& = & \displaystyle{x\ln (x)-x+C.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|since &nbsp;<math style="vertical-align: -2px">\sin^2 x+\cos^2 x=1</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\sec x=\frac{1}{\cos x}.</math>
+
|<u>Note:</u> The domain of the function &nbsp;<math style="vertical-align: -1px">\ln x</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">(0,\infty).</math>
|-
 
|Since &nbsp;<math style="vertical-align: -14px">\frac{\sin x}{\cos x}=\tan x,</math>&nbsp; we have
 
 
|-
 
|-
|
+
|So, this integral is defined for &nbsp;<math style="vertical-align: 0px">x>0.</math>
::<math>\frac{d}{dx}{\tan x}=\sec^2 x.</math>
 
 
|}
 
|}
  
Line 174: Line 157:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\sec^2 x</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x\ln (x)-x+C</math>
 
|-
 
|-
 
|}
 
|}
Line 180: Line 163:
 
== Exercise 1 ==
 
== Exercise 1 ==
  
Calculate the derivative of &nbsp;<math style="vertical-align: -13px">f(x)=\frac{1}{x^2}(\csc x-4).</math>
+
Evaluate &nbsp;<math style="vertical-align: -13px">\int x \sec^2 x~dx.</math>
  
First, we need to know the derivative of &nbsp;<math style="vertical-align: 0px">\csc x.</math>&nbsp; Recall
+
Since we know the antiderivative of &nbsp;<math style="vertical-align: -3px">\sec^2 x,</math>
  
::<math>\csc x =\frac{1}{\sin x}.</math>
+
we let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=\sec^2 x~dx.</math>
  
Now, using the Quotient Rule, we have
+
Then, &nbsp;<math style="vertical-align: 0px">du=dx</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">v=\tan x.</math>
 +
 
 +
Using integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\
+
\displaystyle{\int x \sec^2 x~dx} & = & \displaystyle{x\tan x -\int \tan x~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\
+
& = & \displaystyle{x\tan x -\int \frac{\sin x}{\cos x}~dx.}
 +
\end{array}</math>
 +
 
 +
For the remaining integral, we use &nbsp;<math style="vertical-align: 0px">u-</math>substitution.
 +
 
 +
Let &nbsp;<math style="vertical-align: 0px">u=\cos x.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=-\sin x~dx.</math>
 +
 
 +
So, we get
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int x \sec^2 x~dx} & = & \displaystyle{x\tan x +\int \frac{1}{u}~du}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\
+
& = & \displaystyle{x\tan x + \ln |u|+C}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\
+
& = & \displaystyle{x\tan x+ \ln |\cos x|+C.}
&&\\
 
& = & \displaystyle{-\csc x \cot x.}
 
 
\end{array}</math>
 
\end{array}</math>
  
Using the Product Rule and Power Rule, we have
+
So, we have
 +
::<math>\int x \sec^2 x~dx=x\tan x+ \ln |\cos x|+C.</math>
 +
 
 +
== Exercise 2 ==
 +
 
 +
Evaluate &nbsp;<math style="vertical-align: -13px">\int \frac{\ln x}{x^3}~dx.</math>
 +
 
 +
We start by letting &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">dv=\frac{1}{x^3}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=-\frac{1}{2x^2}.</math>
 +
 
 +
So, using integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\
+
\displaystyle{\int  \frac{\ln x}{x^3}~dx} & = & \displaystyle{-\frac{\ln x}{2x^2}-\int -\frac{1}{2x^2}\bigg(\frac{1}{x}\bigg)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\
+
& = & \displaystyle{-\frac{\ln x}{2x^2}+\int \frac{1}{2x^3}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.}
+
& = & \displaystyle{-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math>
 
  
== Exercise 2 ==
+
::<math>\int \frac{\ln x}{x^3}~dx=-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.</math>
 +
 
 +
== Exercise 3 ==
 +
Evaluate &nbsp;<math style="vertical-align: -13px">\int x\sqrt{x+1}~dx.</math>
 +
 
 +
We start by letting &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">dv=\sqrt{x+1}~dx.</math>
  
Calculate the derivative of &nbsp;<math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math>
+
Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>
  
Notice that the function &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is the product of three functions.  
+
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
  
We start by grouping two of the functions together. So, we have &nbsp;<math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math>
+
::<math style="vertical-align: 0px">v=\int \sqrt{x+1}~dx=\frac{2}{3}(x+1)^{\frac{3}{2}}.</math>
  
Using the Product Rule, we get
+
Hence, by integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\
+
\displaystyle{\int x\sqrt{x+1}~dx} & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\int \frac{2}{3}(x+1)^{\frac{3}{2}}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.}
+
& = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C,}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule again. So,
+
where we use &nbsp;<math style="vertical-align: 0px">u-</math> substitution to evaluate the last integral.
 +
 
 +
So, we have
 +
 
 +
::<math>\int x\sqrt{x+1}~dx=\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C.</math>
 +
 
 +
== Exercise 4 ==
 +
 
 +
Evaluate  &nbsp;<math style="vertical-align: -13px">\int x^2e^{-2x}~dx.</math>
 +
 
 +
We start by letting &nbsp;<math style="vertical-align: 0px">u=x^2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-2x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: 0px">du=2x~dx.</math>
 +
 
 +
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
 
 +
::<math style="vertical-align: 0px">v=\int e^{-2x}~dx=\frac{e^{-2x}}{-2}.</math>
 +
 
 +
Hence, by integration by parts, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\
+
\displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2e^{-2x}}{-2}-\int 2x\bigg(\frac{e^{-2x}}{-2}\bigg)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.}
+
& = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\int xe^{-2x}~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
So, we have
+
Now, we need to use integration by parts a second time.
::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math>
+
 
 +
Let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-2x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: 0px">du=dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
  
But, there is another way to do this problem. Notice
+
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\
+
\displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2 e^{-2x} }{-2}+\frac{x e^{-2x} }{-2}-\int \frac{e^{-2x}}{-2}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\
+
& = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\frac{xe^{-2x}}{-2}+\frac{e^{-2x}}{-4}+C.}
&&\\
 
& = & \displaystyle{2x\tan x.}
 
 
\end{array}</math>
 
\end{array}</math>
  
Now, you would only need to use the Product Rule once instead of twice.
+
So, we have
 +
::<math>\int x^2e^{-2x}~dx=\frac{x^2e^{-2x}}{-2}+\frac{xe^{-2x}}{-2}+\frac{e^{-2x}}{-4}+C.</math>
  
== Exercise 3 ==
+
== Exercise 5 ==
 +
 
 +
Evaluate  &nbsp;<math style="vertical-align: -13px">\int e^{3x}\sin(2x)~dx.</math>
 +
 
 +
We begin by letting &nbsp;<math style="vertical-align: -6px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{3x}~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=2\cos (2x)~dx.</math>
 +
 
 +
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
 +
 
 +
::<math style="vertical-align: 0px">v=\int e^{3x}~dx=\frac{e^{3x}}{3}.</math>
 +
 
 +
Hence, by integration by parts, we have
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int e^{3x} \sin(2x)~dx} & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\int \frac{2}{3}\cos(2x)e^{3x}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2}{3} \int \cos(2x)e^{3x}~dx.}
 +
\end{array}</math>
  
Calculate the derivative of &nbsp;<math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math>
+
Now, we need to use integration by parts a second time.
  
Using the Quotient Rule, we have
+
Let &nbsp;<math style="vertical-align: -5px">u=\cos (2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{3x}~dx.</math>
  
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math>
+
Then, &nbsp;<math style="vertical-align: -5px">du=-2\sin(2x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{e^{3x}}{3}.</math>
  
Now, we need to use the Product Rule. So, we have
+
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\
+
\displaystyle{\int e^{3x} \sin(2x)~dx} & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2}{3} \bigg[ \frac{\cos(2x)e^{3x}}{3}+\int \frac{2}{3}\sin(2x)e^{3x}~dx\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}
+
& = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}-\frac{4}{9}\int e^{3x}\sin(2x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
So, we get
+
Now, we have the exact same integral that we had at the beginning of the problem.
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math>
+
 
 +
So, we add this integral to the other side of the equation.
 +
 
 +
When we do this, we get  
 +
 
 +
::<math>\frac{13}{9} \int e^{3x}\sin(2x)~dx = \frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}.</math>
 +
 
 +
Therefore, we get
 +
 
 +
::<math> \int e^{3x}\sin(2x)~dx = \frac{9}{13}\bigg(\frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}\bigg)+C.</math>
 +
 
 +
== Exercise 6 ==
 +
 
 +
Evaluate  &nbsp;<math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math>
 +
 
 +
For this problem, we use a similar process as Exercise 5.
 +
 
 +
We use integration by parts twice, which produces the same integral given to us in the problem.
 +
 
 +
Then, we solve for our integral.
 +
 
 +
We begin by letting &nbsp;<math style="vertical-align: -5px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\cos(3x)~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=2\cos (2x)~dx.</math>
  
== Exercise 4 ==
+
To find &nbsp;<math style="vertical-align: -4px">v,</math>&nbsp; we need to use &nbsp;<math style="vertical-align: 0px">u-</math>substitution. So,
  
Calculate the derivative of  &nbsp;<math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math>
+
::<math style="vertical-align: 0px">v=\int \cos(3x)~dx=\frac{1}{3}\sin(3x).</math>
  
First, using the Quotient Rule, we have
+
Hence, by integration by parts, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
+
\displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\int \frac{2}{3}\cos(2x)\sin(3x)~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \int \cos(2x)\sin(3x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule. So, we have
+
Now, we need to use integration by parts a second time.
 +
 
 +
Let &nbsp;<math style="vertical-align: -5px">u=\cos (2x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\sin(3x)~dx.</math>
 +
 
 +
Then, &nbsp;<math style="vertical-align: -5px">du=-2\sin(2x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{-\cos(3x)}{3}.</math>
 +
 
 +
Therefore, using integration by parts again, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
+
\displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \bigg[ \frac{-\cos(2x)\cos(3x)}{3}-\int \frac{2}{3}\sin(2x)\cos(3x)~dx\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}+\frac{4}{9}\int \sin(2x)\cos(3x)~dx.}
 
\end{array}</math>
 
\end{array}</math>
  
So, we have
+
Now, we have the exact same integral that we had at the beginning of the problem.
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>
+
 
 +
So, we subtract this integral to the other side of the equation.
 +
 
 +
When we do this, we get
 +
 
 +
::<math>\frac{5}{9} \int \sin(2x)\cos(3x)~dx = \frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}.</math>
 +
 
 +
Therefore, we get
 +
 
 +
::<math> \int e^{3x}\sin(2x)~dx = \frac{9}{5}\bigg(\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}\bigg)+C.</math>

Latest revision as of 12:17, 30 October 2017

Introduction

Let's say we want to integrate

Here, we can compute this antiderivative by using  substitution.

While  substitution is an important integration technique, it will not help us evaluate all integrals.

For example, consider the integral

There is no substitution that will allow us to integrate this integral.

We need another integration technique called integration by parts.

The formula for integration by parts comes from the product rule for derivatives.

Recall from the product rule,

Then, we have

If we solve the last equation for the second integral, we obtain

This formula is the formula for integration by parts.

But, as it is currently stated, it is long and hard to remember.

So, we make a substitution to obtain a nicer formula.

Let    and  

Then,    and  

Plugging these into our formula, we obtain

Warm-Up

Evaluate the following integrals.

1)  

Solution:  
We have two options when doing integration by parts.
We can let    or  
In this case, we let    be the polynomial.
So, we let    and  
Then,    and  
Hence, by integration by parts, we get
Final Answer:  
       

2)  

Solution:  

We have a choice to make.

We can let    or  
In this case, we let    be the polynomial.
So, we let    and  
Then,   
To find    we need to use  substitution. So,
Hence, by integration by parts, we get
where we use   substitution to evaluate the last integral.
Final Answer:  
       

3)  

Solution:  
We have a choice to make.
We can let    or  
In this case, we don't want to let    since we don't know how to integrate    yet.
So, we let    and  
Then,    and  
Hence, by integration by parts, we get
Note: The domain of the function    is  
So, this integral is defined for  
Final Answer:  
       

Exercise 1

Evaluate  

Since we know the antiderivative of  

we let    and  

Then,    and  

Using integration by parts, we get

For the remaining integral, we use  substitution.

Let    Then,  

So, we get

So, we have

Exercise 2

Evaluate  

We start by letting    and  

Then,    and  

So, using integration by parts, we get

So, we have

Exercise 3

Evaluate  

We start by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we get

where we use   substitution to evaluate the last integral.

So, we have

Exercise 4

Evaluate  

We start by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we get

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

So, we have

Exercise 5

Evaluate  

We begin by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we have

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

Now, we have the exact same integral that we had at the beginning of the problem.

So, we add this integral to the other side of the equation.

When we do this, we get

Therefore, we get

Exercise 6

Evaluate  

For this problem, we use a similar process as Exercise 5.

We use integration by parts twice, which produces the same integral given to us in the problem.

Then, we solve for our integral.

We begin by letting    and  

Then,  

To find    we need to use  substitution. So,

Hence, by integration by parts, we have

Now, we need to use integration by parts a second time.

Let    and  

Then,    and  

Therefore, using integration by parts again, we get

Now, we have the exact same integral that we had at the beginning of the problem.

So, we subtract this integral to the other side of the equation.

When we do this, we get

Therefore, we get