Difference between revisions of "Series Problems"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''These questions are meant to be additional practice problems for series.'''
+
'''These questions are meant to be practice problems for series.'''
  
 
'''Determine whether the series converge or diverge.'''
 
'''Determine whether the series converge or diverge.'''
Line 6: Line 6:
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[031_Review Part 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
+
== [[Series Problems,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam">True or false: If all the entries of a &nbsp;<math style="vertical-align: 0px">7\times 7</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">7,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\text{det }A</math>&nbsp; must be &nbsp;<math style="vertical-align: 0px">7^7.</math>
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{2+3^n}{4^n}</math>
  
== [[031_Review Part 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam"> True or false: If a matrix &nbsp;<math style="vertical-align: 0px">A^2</math>&nbsp; is diagonalizable, then the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must be diagonalizable as well.
+
::<span class="exam"><math>\sum_{n=1}^\infty \ln\Bigg(\frac{n^2+1}{2n^2+1}\Bigg)</math>
  
== [[031_Review Part 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: -1px">4\times 4</math>&nbsp; matrix with characteristic equation &nbsp;<math style="vertical-align: -5px">\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable.
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{n}{n^4+1}</math>
  
== [[031_Review Part 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
<span class="exam"> True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable.
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{n^2-1}{3n^4+1}</math>
  
== [[031_Review Part 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; are invertible &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrices, then so is &nbsp;<math style="vertical-align: -1px">A+B.</math>
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{(-1)^{n-1}n^2}{10^n}</math>
  
== [[031_Review Part 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
<span class="exam"> True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">3\times 5</math>&nbsp; matrix and &nbsp;<math style="vertical-align: -4px">\text{dim Nul }A=2,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">A\vec{x}=\vec{b}</math>&nbsp; is consistent for all &nbsp;<math style="vertical-align: 0px">\vec{b}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^3.</math>
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{10^n}{(n+1)4^{2n+1}}</math>
  
== [[031_Review Part 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{(n^2+1)^{2n}}{(2n^2+1)^n}</math>
  
<span class="exam">True or false: Let &nbsp;<math style="vertical-align: 0px">C=AB</math>&nbsp; for &nbsp;<math style="vertical-align: 0px">4\times 4</math>&nbsp; matrices &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B.</math>&nbsp; If &nbsp;<math style="vertical-align: 0px">C</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible.
+
== [[Series Problems,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
== [[031_Review Part 1,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{6n-12}{n^2-4n+5}</math> (using the Integral Test)
  
<span class="exam">True or false: Let &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; be a subspace of &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; be a vector in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4.</math>&nbsp; If &nbsp;<math style="vertical-align: 0px">\vec{v}\in W</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">\vec{v}\in W^\perp,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\vec{v}=\vec{0}.</math>
+
== [[Series Problems,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
  
== [[031_Review Part 1,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{n-1}{n^2\sqrt{n}}</math>
  
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an invertible &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix, and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">C</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrices such that &nbsp;<math style="vertical-align: -4px">AB=AC,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B=C.</math>
+
== [[Series Problems,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{\sin(\frac{n\pi}{2})}{n^3}</math>
 +
 
 +
== [[Series Problems,_Problem_11|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 11&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{3^n+4^n}{5^n}</math>
 +
 
 +
== [[Series Problems,_Problem_12|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 12&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{n^2+1}{5^n}</math>
 +
 
 +
== [[Series Problems,_Problem_13|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 13&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{e^{\frac{1}{n}}}{n^2}</math>
 +
 
 +
== [[Series Problems,_Problem_14|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 14&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \sin(n)</math>
 +
 
 +
== [[Series Problems,_Problem_15|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 15&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty n^2e^{-n^3}</math>

Latest revision as of 13:43, 22 October 2017

These questions are meant to be practice problems for series.

Determine whether the series converge or diverge.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

 Problem 2 

 Problem 3 

 Problem 4 

 Problem 5 

 Problem 6 

 Problem 7 

 Problem 8 

(using the Integral Test)

 Problem 9 

 Problem 10 

 Problem 11 

 Problem 12 

 Problem 13 

 Problem 14 

 Problem 15