Difference between revisions of "Series Problems"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "text") |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | '''These questions are meant to be practice problems for series.''' | |
+ | |||
+ | '''Determine whether the series converge or diverge.''' | ||
+ | |||
+ | '''Click on the <span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | ||
+ | <div class="noautonum">__TOC__</div> | ||
+ | |||
+ | == [[Series Problems,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | ||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{2+3^n}{4^n}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \ln\Bigg(\frac{n^2+1}{2n^2+1}\Bigg)</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{n}{n^4+1}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{n^2-1}{3n^4+1}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{(-1)^{n-1}n^2}{10^n}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | ||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{10^n}{(n+1)4^{2n+1}}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{(n^2+1)^{2n}}{(2n^2+1)^n}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | ||
+ | |||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{6n-12}{n^2-4n+5}</math> (using the Integral Test) | ||
+ | |||
+ | == [[Series Problems,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
+ | |||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{n-1}{n^2\sqrt{n}}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == | ||
+ | |||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{\sin(\frac{n\pi}{2})}{n^3}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_11|<span class="biglink"><span style="font-size:80%"> Problem 11 </span>]] == | ||
+ | |||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{3^n+4^n}{5^n}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_12|<span class="biglink"><span style="font-size:80%"> Problem 12 </span>]] == | ||
+ | |||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{n^2+1}{5^n}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_13|<span class="biglink"><span style="font-size:80%"> Problem 13 </span>]] == | ||
+ | |||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \frac{e^{\frac{1}{n}}}{n^2}</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_14|<span class="biglink"><span style="font-size:80%"> Problem 14 </span>]] == | ||
+ | |||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty \sin(n)</math> | ||
+ | |||
+ | == [[Series Problems,_Problem_15|<span class="biglink"><span style="font-size:80%"> Problem 15 </span>]] == | ||
+ | |||
+ | ::<span class="exam"><math>\sum_{n=1}^\infty n^2e^{-n^3}</math> |
Latest revision as of 13:43, 22 October 2017
These questions are meant to be practice problems for series.
Determine whether the series converge or diverge.
Click on the boxed problem numbers to go to a solution.
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
- (using the Integral Test)