Difference between revisions of "031 Review Part 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
0 & 0 & 2 | 0 & 0 & 2 | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 21: | Line 20: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Since <math style="vertical-align: 0px">A</math> is a triangular matrix, the eigenvalues of <math style="vertical-align: 0px">A</math> are the entries on the diagonal. |
+ | |- | ||
+ | |So, the eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">1,-1,</math> and <math style="vertical-align: 0px">2.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of <math style="vertical-align: 0px">A</math> are | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{bmatrix} | ||
+ | 1 \\ | ||
+ | 0 \\ | ||
+ | 0 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 0 \\ | ||
+ | 1 | ||
+ | \end{bmatrix}</math> | ||
+ | |- | ||
+ | |where each eigenvector has eigenvalue <math style="vertical-align: -4px">1,-1</math> and <math style="vertical-align: -4px">2,</math> respectively. | ||
|} | |} | ||
Line 34: | Line 52: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | The eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">1,-1</math> and <math style="vertical-align: -4px">2,</math> and the corresponding eigenvectors are |
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{bmatrix} | ||
+ | 1 \\ | ||
+ | 0 \\ | ||
+ | 0 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 0 \\ | ||
+ | 1 | ||
+ | \end{bmatrix}.</math> | ||
|} | |} | ||
− | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:53, 15 October 2017
Find the eigenvalues and eigenvectors of the matrix
Foundations: |
---|
An eigenvector of a matrix is a nonzero vector such that for some scalar |
In this case, we say that is an eigenvalue of |
Solution:
Step 1: |
---|
Since is a triangular matrix, the eigenvalues of are the entries on the diagonal. |
So, the eigenvalues of are and |
Step 2: |
---|
Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of are |
|
where each eigenvector has eigenvalue and respectively. |
Final Answer: |
---|
The eigenvalues of are and and the corresponding eigenvectors are |
|