Difference between revisions of "031 Review Part 3, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| (2 intermediate revisions by the same user not shown) | |||
| Line 14: | Line 14: | ||
<span class="exam">Use the Diagonalization Theorem to find the eigenvalues of <math style="vertical-align: 0px">A</math> and a basis for each eigenspace. | <span class="exam">Use the Diagonalization Theorem to find the eigenvalues of <math style="vertical-align: 0px">A</math> and a basis for each eigenspace. | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 35: | Line 34: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |Since | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{bmatrix} | ||
| + | 3 & 0 & 0 \\ | ||
| + | 0 & 4 &0\\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix}</math> | ||
| + | |- | ||
| + | |is a diagonal matrix, the eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: 0px">3</math> and <math style="vertical-align: -1px">4</math> by the Diagonalization Theorem. | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |By the Diagonalization Theorem, a basis for the eigenspace corresponding | ||
| + | |- | ||
| + | |to the eigenvalue <math style="vertical-align: 0px">3</math> is | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\Bigg\{\begin{bmatrix} | ||
| + | 3 \\ | ||
| + | 0 \\ | ||
| + | 1 | ||
| + | \end{bmatrix},\begin{bmatrix} | ||
| + | -1 \\ | ||
| + | -3\\ | ||
| + | 0 | ||
| + | \end{bmatrix}\Bigg\}</math> | ||
| + | |- | ||
| + | |and a basis for the eigenspace corresponding to the eigenvalue <math style="vertical-align: -1px">4</math> is | ||
|- | |- | ||
| | | | ||
| + | ::<math>\Bigg\{\begin{bmatrix} | ||
| + | 0 \\ | ||
| + | 1 \\ | ||
| + | 1 | ||
| + | \end{bmatrix}\Bigg\}.</math> | ||
|} | |} | ||
| Line 49: | Line 79: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | The eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: 0px">3</math> and <math style="vertical-align: -1px">4.</math> |
| + | |- | ||
| + | | A basis for the eigenspace corresponding | ||
| + | |- | ||
| + | | to the eigenvalue <math style="vertical-align: 0px">3</math> is | ||
| + | |- | ||
| + | | | ||
| + | ::::<math>\Bigg\{\begin{bmatrix} | ||
| + | 3 \\ | ||
| + | 0 \\ | ||
| + | 1 | ||
| + | \end{bmatrix},\begin{bmatrix} | ||
| + | -1 \\ | ||
| + | -3\\ | ||
| + | 0 | ||
| + | \end{bmatrix}\Bigg\}</math> | ||
| + | |- | ||
| + | | and a basis for the eigenspace corresponding to the eigenvalue <math style="vertical-align: -1px">4</math> is | ||
| + | |- | ||
| + | | | ||
| + | ::::<math>\Bigg\{\begin{bmatrix} | ||
| + | 0 \\ | ||
| + | 1 \\ | ||
| + | 1 | ||
| + | \end{bmatrix}\Bigg\}.</math> | ||
|} | |} | ||
| − | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 14:03, 15 October 2017
Let
Use the Diagonalization Theorem to find the eigenvalues of and a basis for each eigenspace.
| Foundations: |
|---|
| Diagonalization Theorem |
| An matrix is diagonalizable if and only if has linearly independent eigenvectors. |
| In fact, with a diagonal matrix, if and only if the columns of are linearly |
| independent eigenvectors of In this case, the diagonal entries of are eigenvalues of that |
| correspond, respectively , to the eigenvectors in |
Solution:
| Step 1: |
|---|
| Since |
|
|
| is a diagonal matrix, the eigenvalues of are and by the Diagonalization Theorem. |
| Step 2: |
|---|
| By the Diagonalization Theorem, a basis for the eigenspace corresponding |
| to the eigenvalue is |
|
|
| and a basis for the eigenspace corresponding to the eigenvalue is |
|
|
| Final Answer: |
|---|
| The eigenvalues of are and |
| A basis for the eigenspace corresponding |
| to the eigenvalue is |
|
|
| and a basis for the eigenspace corresponding to the eigenvalue is |
|
|