Difference between revisions of "031 Review Part 2, Problem 4"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| (2 intermediate revisions by the same user not shown) | |||
| Line 21: | Line 21: | ||
            3    |             3    | ||
          \end{bmatrix}</math>  in the range of  <math style="vertical-align: 0px">T?</math>  Explain.  |           \end{bmatrix}</math>  in the range of  <math style="vertical-align: 0px">T?</math>  Explain.  | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
| Line 37: | Line 36: | ||
:where  <math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>  is the standard basis of  <math style="vertical-align: -1px">\mathbb{R}^n.</math>  | :where  <math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>  is the standard basis of  <math style="vertical-align: -1px">\mathbb{R}^n.</math>  | ||
|-  | |-  | ||
| − | |'''2.''' A vector  <math style="vertical-align: 0px">\vec{  | + | |'''2.''' A vector  <math style="vertical-align: 0px">\vec{v}</math>  is in the image of  <math style="vertical-align: 0px">T</math>  if there exists  <math style="vertical-align: 0px">\vec{x}</math>  such that  | 
|-  | |-  | ||
|  | |  | ||
| Line 58: | Line 57: | ||
            5 \\  |             5 \\  | ||
            -1  |             -1  | ||
| − |           \end{bmatrix},T(\vec{e_2})=  | + |           \end{bmatrix},~T(\vec{e_2})=  | 
  \begin{bmatrix}  |   \begin{bmatrix}  | ||
            -2.5 \\  |             -2.5 \\  | ||
            0.5  |             0.5  | ||
| − |           \end{bmatrix},T(\vec{e_3})=  | + |           \end{bmatrix},\text{ and }T(\vec{e_3})=  | 
  \begin{bmatrix}  |   \begin{bmatrix}  | ||
            10 \\  |             10 \\  | ||
| Line 78: | Line 77: | ||
            5 & -2.5 &10 \\  |             5 & -2.5 &10 \\  | ||
            -1 & 0.5 & -2  |             -1 & 0.5 & -2  | ||
| − |           \end{bmatrix}</math>  | + |           \end{bmatrix}.</math>  | 
|}  | |}  | ||
| Line 85: | Line 84: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 1:      | !Step 1:      | ||
| + | |-  | ||
| + | |Since  <math style="vertical-align: 0px">T</math>  is a linear transformation, we know  | ||
|-  | |-  | ||
|  | |  | ||
| + |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{T(\vec{u})} & = & \displaystyle{T(7\vec{e_1}-4\vec{e_2})}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{T(7\vec{e_1})-T(4\vec{e_2})}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{7T(\vec{e_1})-4T(\vec{e_2}).}  | ||
| + | \end{array}</math>  | ||
|}  | |}  | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 2:    | !Step 2:    | ||
| + | |-  | ||
| + | |Now, we have  | ||
|-  | |-  | ||
|  | |  | ||
| + |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{T(\vec{u})} & = & \displaystyle{7\begin{bmatrix}  | ||
| + |            5 \\  | ||
| + |            -1  | ||
| + |          \end{bmatrix}-4\begin{bmatrix}  | ||
| + |            -2.5 \\  | ||
| + |            0.5  | ||
| + |          \end{bmatrix}}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{\begin{bmatrix}  | ||
| + |            35 \\  | ||
| + |            -7  | ||
| + |          \end{bmatrix}+\begin{bmatrix}  | ||
| + |            10 \\  | ||
| + |            -2  | ||
| + |          \end{bmatrix}}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{\begin{bmatrix}  | ||
| + |            45 \\  | ||
| + |            -9  | ||
| + |          \end{bmatrix}.}  | ||
| + | \end{array}</math>  | ||
|}  | |}  | ||
| Line 99: | Line 131: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 1:      | !Step 1:      | ||
| + | |-  | ||
| + | |To answer this question, we augment the standard matrix of  <math style="vertical-align: -1px">T</math>  with this vector and row reduce this matrix.  | ||
| + | |-  | ||
| + | |So, we have the matrix  | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>\left[\begin{array}{ccc|c}     | ||
| + |            5 & -2.5 & 10 & -1\\  | ||
| + |            -1 & 0.5  & -2  & 3  | ||
| + |          \end{array}\right].</math>  | ||
|}  | |}  | ||
| Line 107: | Line 147: | ||
|-  | |-  | ||
|  | |  | ||
| + | Now, row reducing this matrix, we have  | ||
| + | |-  | ||
| + | |  | ||
| + |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{\left[\begin{array}{ccc|c}     | ||
| + |             5 & -2.5 & 10 & -1\\  | ||
| + |            -1 & 0.5  & -2  & 3  | ||
| + |          \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|c}     | ||
| + |           5 & -2.5 & 10 & -1\\  | ||
| + |            -5 & 2.5  & -10  & 15  | ||
| + |          \end{array}\right]}\\  | ||
| + | &&\\  | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|c}     | ||
| + |            5 & -2.5 & 10 & -1\\  | ||
| + |            0 & 0  & 0  & 14  | ||
| + |          \end{array}\right].}  | ||
| + | \end{array}</math>  | ||
| + | |-  | ||
| + | |From here, we can tell that the corresponding system is inconsistent.   | ||
| + | |-  | ||
| + | |Hence, this vector is not in the range of  <math style="vertical-align: 0px">T.</math>   | ||
|}  | |}  | ||
| Line 113: | Line 174: | ||
!Final Answer:      | !Final Answer:      | ||
|-  | |-  | ||
| − | |   '''(a)'''        | + | |   '''(a)'''     <math>[T]=\begin{bmatrix}  | 
| + |            5 & -2.5 &10 \\  | ||
| + |            -1 & 0.5 & -2  | ||
| + |          \end{bmatrix}</math>  | ||
| + | |-  | ||
| + | |   '''(b)'''     <math>\begin{bmatrix}  | ||
| + |            45 \\  | ||
| + |            -9  | ||
| + |          \end{bmatrix}</math>  | ||
|-  | |-  | ||
| − | |   '''(  | + | |   '''(c)'''     No, see above   | 
|}  | |}  | ||
| − | [[031_Review_Part_2|'''<u>Return to   | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]  | 
Latest revision as of 12:27, 15 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
| Foundations: | 
|---|
| 1. The standard matrix of a linear transformation is given by | 
| 
 | 
  | 
| 2. A vector is in the image of if there exists such that | 
| 
 | 
Solution:
(a)
| Step 1: | 
|---|
| Notice, we have | 
| 
 | 
| Step 2: | 
|---|
| So, the standard matrix of is | 
| 
 | 
(b)
| Step 1: | 
|---|
| Since is a linear transformation, we know | 
| 
 
  | 
| Step 2: | 
|---|
| Now, we have | 
| 
 
  | 
(c)
| Step 1: | 
|---|
| To answer this question, we augment the standard matrix of with this vector and row reduce this matrix. | 
| So, we have the matrix | 
| 
 | 
| Step 2: | 
|---|
| 
 Now, row reducing this matrix, we have  | 
| 
 
  | 
| From here, we can tell that the corresponding system is inconsistent. | 
| Hence, this vector is not in the range of | 
| Final Answer: | 
|---|
| (a) | 
| (b) | 
| (c) No, see above |