Difference between revisions of "031 Review Part 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 21: Line 21:
 
           3  
 
           3  
 
         \end{bmatrix}</math>&nbsp; in the range of &nbsp;<math style="vertical-align: 0px">T?</math>&nbsp; Explain.
 
         \end{bmatrix}</math>&nbsp; in the range of &nbsp;<math style="vertical-align: 0px">T?</math>&nbsp; Explain.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 37: Line 36:
 
:where &nbsp;<math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>&nbsp; is the standard basis of &nbsp;<math style="vertical-align: -1px">\mathbb{R}^n.</math>
 
:where &nbsp;<math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>&nbsp; is the standard basis of &nbsp;<math style="vertical-align: -1px">\mathbb{R}^n.</math>
 
|-
 
|-
|'''2.''' A vector &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is in the image of &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; if there exists &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; such that
+
|'''2.''' A vector &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; is in the image of &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; if there exists &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; such that
 
|-
 
|-
 
|
 
|
Line 50: Line 49:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Notice, we have
 
|-
 
|-
 
|
 
|
 +
::<math>T(\vec{e_1})=
 +
\begin{bmatrix}
 +
          5 \\
 +
          -1
 +
        \end{bmatrix},~T(\vec{e_2})=
 +
\begin{bmatrix}
 +
          -2.5 \\
 +
          0.5
 +
        \end{bmatrix},\text{ and }T(\vec{e_3})=
 +
\begin{bmatrix}
 +
          10 \\
 +
          -2
 +
        \end{bmatrix}.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|So, the standard matrix of &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>[T]=\begin{bmatrix}
 +
          5 & -2.5 &10 \\
 +
          -1 & 0.5 & -2
 +
        \end{bmatrix}.</math>
 
|}
 
|}
  
Line 64: Line 84:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is a linear transformation, we know
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{T(\vec{u})} & = & \displaystyle{T(7\vec{e_1}-4\vec{e_2})}\\
 +
&&\\
 +
& = & \displaystyle{T(7\vec{e_1})-T(4\vec{e_2})}\\
 +
&&\\
 +
& = & \displaystyle{7T(\vec{e_1})-4T(\vec{e_2}).}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{T(\vec{u})} & = & \displaystyle{7\begin{bmatrix}
 +
          5 \\
 +
          -1
 +
        \end{bmatrix}-4\begin{bmatrix}
 +
          -2.5 \\
 +
          0.5
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          35 \\
 +
          -7
 +
        \end{bmatrix}+\begin{bmatrix}
 +
          10 \\
 +
          -2
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          45 \\
 +
          -9
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 78: Line 131:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|To answer this question, we augment the standard matrix of &nbsp;<math style="vertical-align: -1px">T</math>&nbsp; with this vector and row reduce this matrix.
 +
|-
 +
|So, we have the matrix
 
|-
 
|-
 
|
 
|
 +
::<math>\left[\begin{array}{ccc|c} 
 +
          5 & -2.5 & 10 & -1\\
 +
          -1 & 0.5  & -2  & 3
 +
        \end{array}\right].</math>
 
|}
 
|}
  
Line 86: Line 147:
 
|-
 
|-
 
|
 
|
 +
Now, row reducing this matrix, we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\left[\begin{array}{ccc|c} 
 +
            5 & -2.5 & 10 & -1\\
 +
          -1 & 0.5  & -2  & 3
 +
        \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|c} 
 +
          5 & -2.5 & 10 & -1\\
 +
          -5 & 2.5  & -10  & 15
 +
        \end{array}\right]}\\
 +
&&\\
 +
& \sim & \displaystyle{\left[\begin{array}{ccc|c} 
 +
          5 & -2.5 & 10 & -1\\
 +
          0 & 0  & 0  & 14
 +
        \end{array}\right].}
 +
\end{array}</math>
 +
|-
 +
|From here, we can tell that the corresponding system is inconsistent.
 +
|-
 +
|Hence, this vector is not in the range of &nbsp;<math style="vertical-align: 0px">T.</math>&nbsp;
 
|}
 
|}
  
Line 92: Line 174:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>[T]=\begin{bmatrix}
 +
          5 & -2.5 &10 \\
 +
          -1 & 0.5 & -2
 +
        \end{bmatrix}</math>
 +
|-
 +
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\begin{bmatrix}
 +
          45 \\
 +
          -9
 +
        \end{bmatrix}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(c)''' &nbsp; &nbsp; No, see above
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:27, 15 October 2017

Suppose    is a linear transformation given by the formula

(a) Find the standard matrix for  

(b) Let    Find  

(c) Is    in the range of    Explain.

Foundations:  
1. The standard matrix of a linear transformation    is given by
where    is the standard basis of  
2. A vector    is in the image of    if there exists    such that


Solution:

(a)

Step 1:  
Notice, we have
Step 2:  
So, the standard matrix of    is

(b)

Step 1:  
Since    is a linear transformation, we know

       

Step 2:  
Now, we have

       

(c)

Step 1:  
To answer this question, we augment the standard matrix of    with this vector and row reduce this matrix.
So, we have the matrix
Step 2:  

Now, row reducing this matrix, we have

       

From here, we can tell that the corresponding system is inconsistent.
Hence, this vector is not in the range of   


Final Answer:  
   (a)    
   (b)    
   (c)     No, see above

Return to Review Problems