Difference between revisions of "031 Review Part 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
<span class="exam">Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix product &nbsp;<math style="vertical-align: 0px">AB</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">BA.</math>
 
<span class="exam">Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix product &nbsp;<math style="vertical-align: 0px">AB</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">BA.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 54: Line 53:
 
|&nbsp;&nbsp; &nbsp; &nbsp;  See solution above.
 
|&nbsp;&nbsp; &nbsp; &nbsp;  See solution above.
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 14:09, 15 October 2017

Show that if    is an eigenvector of the matrix product    and    then    is an eigenvector of  

Foundations:  
An eigenvector    of a matrix    is a nonzero vector such that
for some scalar  


Solution:

Step 1:  
Since    is an eigenvector of    we know    and
for some scalar  
Using associativity of matrix multiplication, we have
Step 2:  
Now, we have
       
Since    we can conclude that    is an eigenvector of  


Final Answer:  
       See solution above.

Return to Review Problems