Difference between revisions of "031 Review Part 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| (One intermediate revision by the same user not shown) | |||
| Line 12: | Line 12: | ||
<span class="exam">(b) Define a linear transformation <math style="vertical-align: 0px">T</math> by the formula <math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math> Is <math style="vertical-align: 0px">T</math> onto? Explain. | <span class="exam">(b) Define a linear transformation <math style="vertical-align: 0px">T</math> by the formula <math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math> Is <math style="vertical-align: 0px">T</math> onto? Explain. | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 19: | Line 18: | ||
|'''1.''' A matrix <math style="vertical-align: 0px">A</math> is invertible if and only if <math style="vertical-align: -5px">\text{det }A\neq 0.</math> | |'''1.''' A matrix <math style="vertical-align: 0px">A</math> is invertible if and only if <math style="vertical-align: -5px">\text{det }A\neq 0.</math> | ||
|- | |- | ||
| − | |'''2.''' A linear transformation <math style="vertical-align: 0px">T</math> given by <math style="vertical-align: -5px">T(\vec{x})=A\vec{x}</math> where <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">m\times n</math> matrix | + | |'''2.''' A linear transformation <math style="vertical-align: 0px">T</math> given by <math style="vertical-align: -5px">T(\vec{x})=A\vec{x},</math> where <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">m\times n</math> matrix, is onto |
|- | |- | ||
| | | | ||
| Line 32: | Line 31: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |We begin by calculating <math style="vertical-align: -1px">\text{det }B.</math> | ||
| + | |- | ||
| + | |To do this, we use cofactor expansion along the second row first and then the first column. | ||
| + | |- | ||
| + | |So, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\text{det }B} & = & \displaystyle{3(-1)^{2+2}\left|\begin{array}{ccc} | ||
| + | 1 & 3 & 4 \\ | ||
| + | 0 & 1 & 2 \\ | ||
| + | 0 & 3 & 6 | ||
| + | \end{array}\right|}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{3\cdot 1 \cdot (-1)^{1+1} \left|\begin{array}{cc} | ||
| + | 1 & 2 \\ | ||
| + | 3 & 6 | ||
| + | \end{array}\right|}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{3(6-6)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 39: | Line 60: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Since <math style="vertical-align: -4px">\text{det }B=0,</math> we know that <math style="vertical-align: 0px">B</math> is not invertible. |
|} | |} | ||
| Line 47: | Line 68: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |If <math style="vertical-align: 0px">T</math> was onto, then <math style="vertical-align: 0px">B</math> spans <math style="vertical-align: 0px">\mathbb{R}^4.</math> |
| + | |- | ||
| + | |This would mean that <math style="vertical-align: 0px">B</math> contains 4 pivots. | ||
|} | |} | ||
| Line 53: | Line 76: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |But, if <math style="vertical-align: 0px">B</math> has 4 pivots, then <math style="vertical-align: 0px">B</math> would be invertible, which is not true. |
| + | |- | ||
| + | |Hence, <math style="vertical-align: 0px">T</math> is not onto. | ||
|} | |} | ||
| Line 60: | Line 85: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' Since <math style="vertical-align: -4px">\text{det }B=0,</math> we have that <math style="vertical-align: 0px">B</math> is not invertible. |
| + | |||
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' No, see explaination above. |
|} | |} | ||
| − | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:17, 15 October 2017
Let
(a) Is invertible? Explain.
(b) Define a linear transformation by the formula Is onto? Explain.
| Foundations: |
|---|
| 1. A matrix is invertible if and only if |
| 2. A linear transformation given by where is a matrix, is onto |
|
Solution:
(a)
| Step 1: |
|---|
| We begin by calculating |
| To do this, we use cofactor expansion along the second row first and then the first column. |
| So, we have |
|
|
| Step 2: |
|---|
| Since we know that is not invertible. |
(b)
| Step 1: |
|---|
| If was onto, then spans |
| This would mean that contains 4 pivots. |
| Step 2: |
|---|
| But, if has 4 pivots, then would be invertible, which is not true. |
| Hence, is not onto. |
| Final Answer: |
|---|
| (a) Since we have that is not invertible. |
| (b) No, see explaination above. |