Difference between revisions of "031 Review Part 2, Problem 1"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| (2 intermediate revisions by the same user not shown) | |||
| Line 16: | Line 16: | ||
<span class="exam">(b) Find bases for  <math style="vertical-align: 0px">\text{Col }A</math>  and  <math style="vertical-align: 0px">\text{Nul }A.</math>  Find an example of a nonzero vector that belongs to  <math style="vertical-align: -5px">\text{Col }A,</math>  as well as an example of a nonzero vector that belongs to  <math style="vertical-align: 0px">\text{Nul }A.</math>  | <span class="exam">(b) Find bases for  <math style="vertical-align: 0px">\text{Col }A</math>  and  <math style="vertical-align: 0px">\text{Nul }A.</math>  Find an example of a nonzero vector that belongs to  <math style="vertical-align: -5px">\text{Col }A,</math>  as well as an example of a nonzero vector that belongs to  <math style="vertical-align: 0px">\text{Nul }A.</math>  | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
| Line 94: | Line 93: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 2:    | !Step 2:    | ||
| + | |-  | ||
| + | |To find a basis for  <math style="vertical-align: -1px">\text{Nul }A</math>  we translate the matrix equation  <math style="vertical-align: -1px">Bx=0</math>  back into a system of equations   | ||
| + | |-  | ||
| + | |and solve for the pivot variables.  | ||
| + | |-  | ||
| + | |Hence, we have  | ||
| + | |-  | ||
| + | |  | ||
| + |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{x_1-x_3+5x_4} & = & \displaystyle{0}\\  | ||
| + | &&\\  | ||
| + | \displaystyle{-2x_2+5x_3-6x_4} & = & \displaystyle{0.}  | ||
| + | \end{array}</math>  | ||
| + | |-  | ||
| + | |Solving for the pivot variables, we have  | ||
| + | |-  | ||
| + | |  | ||
| + |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{x_1} & = & \displaystyle{x_3-5x_4}\\  | ||
| + | &&\\  | ||
| + | \displaystyle{x_2} & = & \displaystyle{\frac{5}{2}x_3-3x_4.}  | ||
| + | \end{array}</math>  | ||
| + | |-  | ||
| + | |Hence, the solutions to  <math style="vertical-align: -1px">Ax=0</math>  are of the form   | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>x_3\begin{bmatrix}  | ||
| + |            1  \\  | ||
| + |            \frac{5}{2} \\  | ||
| + |            1 \\  | ||
| + |            0  | ||
| + |          \end{bmatrix}+x_4\begin{bmatrix}  | ||
| + |            -5  \\  | ||
| + |            -3 \\  | ||
| + |            0 \\  | ||
| + |            1  | ||
| + |          \end{bmatrix}.</math>  | ||
| + | |-  | ||
| + | |Therefore, a basis for  <math style="vertical-align: -1px">\text{Nul }A</math>  is   | ||
| + | |-  | ||
| + | |  | ||
| + | ::<math>\Bigg\{\begin{bmatrix}  | ||
| + |            1  \\  | ||
| + |            \frac{5}{2} \\  | ||
| + |            1 \\  | ||
| + |            0  | ||
| + |          \end{bmatrix},  | ||
| + |          \begin{bmatrix}  | ||
| + |           -5  \\  | ||
| + |            -3 \\  | ||
| + |            0 \\  | ||
| + |            1   | ||
| + |         \end{bmatrix}\Bigg\}.  | ||
| + |          </math>  | ||
|}  | |}  | ||
| Line 102: | Line 153: | ||
!Final Answer:      | !Final Answer:      | ||
|-  | |-  | ||
| − | |   '''(a)'''        | + | |   '''(a)'''     <math style="vertical-align: -2px">\text{rank }A=2</math>  and  <math style="vertical-align: -2px">\text{dim Nul }A=2</math>  | 
|-  | |-  | ||
| − | |   '''(b)'''        | + | |   '''(b)'''     A basis for  <math style="vertical-align: -1px">\text{Col }A</math>  is  <math>\Bigg\{\begin{bmatrix}  | 
| + |            1  \\  | ||
| + |            -1 \\  | ||
| + |            5  | ||
| + |          \end{bmatrix},  | ||
| + |          \begin{bmatrix}  | ||
| + |            -4  \\  | ||
| + |            2 \\  | ||
| + |            -6  | ||
| + |          \end{bmatrix}\Bigg\}  | ||
| + |          </math>  | ||
| + | |-  | ||
| + | |        and a basis for  <math style="vertical-align: -1px">\text{Nul }A</math>  is  <math>\Bigg\{\begin{bmatrix}  | ||
| + |            1  \\  | ||
| + |            \frac{5}{2} \\  | ||
| + |            1 \\  | ||
| + |            0  | ||
| + |          \end{bmatrix},  | ||
| + |          \begin{bmatrix}  | ||
| + |           -5  \\  | ||
| + |            -3 \\  | ||
| + |            0 \\  | ||
| + |            1   | ||
| + |         \end{bmatrix}\Bigg\}.  | ||
| + |          </math>  | ||
|}  | |}  | ||
| − | [[031_Review_Part_2|'''<u>Return to   | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]  | 
Latest revision as of 12:12, 15 October 2017
Consider the matrix and assume that it is row equivalent to the matrix
(a) List rank and
(b) Find bases for and Find an example of a nonzero vector that belongs to as well as an example of a nonzero vector that belongs to
| Foundations: | 
|---|
| 1. For a matrix the rank of is | 
| 
 | 
| 2. is the vector space spanned by the columns of | 
| 3. is the vector space containing all solutions to | 
Solution:
(a)
| Step 1: | 
|---|
| From the matrix we see that contains two pivots. | 
| Therefore, | 
| 
 
  | 
| Step 2: | 
|---|
| By the Rank Theorem, we have | 
| 
 
  | 
| Hence, | 
(b)
| Step 1: | 
|---|
| From the matrix we see that contains pivots in Column 1 and 2. | 
| So, to obtain a basis for we select the corresponding columns from | 
| Hence, a basis for is | 
| 
 | 
| Step 2: | 
|---|
| To find a basis for we translate the matrix equation back into a system of equations | 
| and solve for the pivot variables. | 
| Hence, we have | 
| 
 
  | 
| Solving for the pivot variables, we have | 
| 
 
  | 
| Hence, the solutions to are of the form | 
| 
 | 
| Therefore, a basis for is | 
| 
 | 
| Final Answer: | 
|---|
| (a) and | 
| (b) A basis for is | 
| and a basis for is |