Difference between revisions of "031 Review Part 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam">Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix product &nbsp;<math style="vertical-align: 0px">AB</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">BA.</math>
 
<span class="exam">Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix product &nbsp;<math style="vertical-align: 0px">AB</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">BA.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 +
|-
 +
|An eigenvector &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; of a matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a nonzero vector such that
 
|-
 
|-
 
|
 
|
 +
::<math>A\vec{x}=\lambda\vec{x}</math>
 +
|-
 +
|for some scalar &nbsp;<math style="vertical-align: 0px">\lambda.</math>
 
|}
 
|}
  
Line 13: Line 17:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: -4px">AB,</math>&nbsp; we know &nbsp;<math style="vertical-align: -5px">\vec{x}\neq \vec{0}</math>&nbsp; and
 
|-
 
|-
 
|
 
|
 +
::<math>AB(\vec{x})=\lambda\vec{x}</math>
 +
|-
 +
|for some scalar &nbsp;<math style="vertical-align: 0px">\lambda.</math>
 +
|-
 +
|Using associativity of matrix multiplication, we have
 +
|-
 +
|
 +
::<math>A(B\vec{x})=\lambda\vec{x}.</math>
 
|}
 
|}
  
Line 20: Line 34:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{BA(B\vec{x})} & = & \displaystyle{B(A(B\vec{x}))}\\
 +
&&\\
 +
& = & \displaystyle{B(\lambda \vec{x})}\\
 +
&&\\
 +
& = & \displaystyle{\lambda B\vec{x}.}
 +
\end{array}</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -5px">B\vec{x}\neq \vec{0},</math>&nbsp; we can conclude that &nbsp;<math style="vertical-align: 0px">B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">AB.</math>
 
|}
 
|}
  
Line 27: Line 51:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;   
+
|&nbsp;&nbsp; &nbsp; &nbsp;  See solution above.
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 14:09, 15 October 2017

Show that if    is an eigenvector of the matrix product    and    then    is an eigenvector of  

Foundations:  
An eigenvector    of a matrix    is a nonzero vector such that
for some scalar  


Solution:

Step 1:  
Since    is an eigenvector of    we know    and
for some scalar  
Using associativity of matrix multiplication, we have
Step 2:  
Now, we have
       
Since    we can conclude that    is an eigenvector of  


Final Answer:  
       See solution above.

Return to Review Problems