Difference between revisions of "031 Review Part 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 14: Line 14:
  
 
<span class="exam">Use the Diagonalization Theorem to find the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and a basis for each eigenspace.
 
<span class="exam">Use the Diagonalization Theorem to find the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and a basis for each eigenspace.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|
+
|'''Diagonalization Theorem'''
 +
|-
 +
|An &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable if and only if &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; linearly independent eigenvectors.
 +
|-
 +
|In fact, &nbsp;<math style="vertical-align: -4px">A=PDP^{-1},</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">D</math>&nbsp; a diagonal matrix, if and only if the columns of &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; linearly
 +
|-
 +
|independent eigenvectors of &nbsp;<math style="vertical-align: 0px">A.</math>&nbsp; In this case, the diagonal entries of &nbsp;<math style="vertical-align: 0px">D</math>&nbsp; are eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; that
 +
|-
 +
|correspond, respectively , to the eigenvectors in &nbsp;<math style="vertical-align: 0px">P.</math>
 
|}
 
|}
  
Line 27: Line 34:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Since
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{bmatrix}
 +
          3 & 0 & 0 \\
 +
          0 & 4 &0\\
 +
          0 & 0 & 3
 +
        \end{bmatrix}</math>
 +
|-
 +
|is a diagonal matrix, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">4</math>&nbsp; by the Diagonalization Theorem.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|By the Diagonalization Theorem, a basis for the eigenspace corresponding
 +
|-
 +
|to the eigenvalue &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix},\begin{bmatrix}
 +
          -1 \\
 +
          -3\\
 +
          0
 +
        \end{bmatrix}\Bigg\}</math>
 +
|-
 +
|and a basis for the eigenspace corresponding to the eigenvalue &nbsp;<math style="vertical-align: -1px">4</math>&nbsp; is
 +
|-
 +
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          0 \\
 +
          1 \\
 +
          1
 +
        \end{bmatrix}\Bigg\}.</math>
 
|}
 
|}
  
Line 41: Line 79:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp; &nbsp; &nbsp; &nbsp; The eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">4.</math>&nbsp;
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; A basis for the eigenspace corresponding
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; to the eigenvalue &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; is
 +
|-
 +
|
 +
::::<math>\Bigg\{\begin{bmatrix}
 +
          3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix},\begin{bmatrix}
 +
          -1 \\
 +
          -3\\
 +
          0
 +
        \end{bmatrix}\Bigg\}</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; and a basis for the eigenspace corresponding to the eigenvalue &nbsp;<math style="vertical-align: -1px">4</math>&nbsp; is
 +
|-
 +
|
 +
::::<math>\Bigg\{\begin{bmatrix}
 +
          0 \\
 +
          1 \\
 +
          1
 +
        \end{bmatrix}\Bigg\}.</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 14:03, 15 October 2017

Let  

Use the Diagonalization Theorem to find the eigenvalues of    and a basis for each eigenspace.

Foundations:  
Diagonalization Theorem
An    matrix    is diagonalizable if and only if    has    linearly independent eigenvectors.
In fact,    with    a diagonal matrix, if and only if the columns of    are    linearly
independent eigenvectors of    In this case, the diagonal entries of    are eigenvalues of    that
correspond, respectively , to the eigenvectors in  


Solution:

Step 1:  
Since
is a diagonal matrix, the eigenvalues of    are    and    by the Diagonalization Theorem.
Step 2:  
By the Diagonalization Theorem, a basis for the eigenspace corresponding
to the eigenvalue    is
and a basis for the eigenspace corresponding to the eigenvalue    is


Final Answer:  
        The eigenvalues of    are    and   
        A basis for the eigenspace corresponding
        to the eigenvalue    is
        and a basis for the eigenspace corresponding to the eigenvalue    is

Return to Review Problems