Difference between revisions of "031 Review Part 3, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| (3 intermediate revisions by the same user not shown) | |||
| Line 15: | Line 15: | ||
0 | 0 | ||
\end{bmatrix}</math> in <math style="vertical-align: 0px">W^\perp?</math> Explain. | \end{bmatrix}</math> in <math style="vertical-align: 0px">W^\perp?</math> Explain. | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |Recall that if <math style="vertical-align: 0px">W</math> is a subspace of <math style="vertical-align: -4px">\mathbb{R}^n,</math> then | ||
|- | |- | ||
| | | | ||
| + | ::<math>W^\perp=\{ \vec{v}\in \mathbb{R}^n ~: ~ \vec{v}\cdot \vec{w}=0 \text{ for all }w\in W\}.</math> | ||
|} | |} | ||
| Line 27: | Line 29: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step 1: | + | !Step 1: |
| + | |- | ||
| + | |To determine whether the vector | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math> | ||
| + | |- | ||
| + | |is in <math style="vertical-align: -4px">W^\perp,</math> it suffices to see if this vector is orthogonal to | ||
| + | |- | ||
| + | |the basis elements of <math style="vertical-align: 0px">W.</math> | ||
| + | |- | ||
| + | |Notice that we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\cdot \begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 0 \\ | ||
| + | -1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}} & = & \displaystyle{2(2)+6(0)+4(-1)+0(0)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Additionally, we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\cdot \begin{bmatrix} | ||
| + | -3 \\ | ||
| + | 1 \\ | ||
| + | 0 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}} & = & \displaystyle{2(-3)+6(1)+4(0)+0(0)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Hence, we conclude | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\in W^\perp.</math> | ||
|} | |} | ||
| Line 42: | Line 102: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | <math>\begin{bmatrix} |
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\in W^\perp</math> | ||
|} | |} | ||
| − | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:56, 15 October 2017
Let Is in Explain.
| Foundations: |
|---|
| Recall that if is a subspace of then |
|
|
Solution:
| Step 1: |
|---|
| To determine whether the vector |
|
|
| is in it suffices to see if this vector is orthogonal to |
| the basis elements of |
| Notice that we have |
|
|
| Step 2: |
|---|
| Additionally, we have |
|
|
| Hence, we conclude |
|
|
| Final Answer: |
|---|