Difference between revisions of "031 Review Part 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
           0 & 0 & 2  
 
           0 & 0 & 2  
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|
+
|An eigenvector of a matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a nonzero vector &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; such that &nbsp;<math style="vertical-align: 0px">A\vec{x}=\lambda\vec{x}</math>&nbsp; for some scalar &nbsp;<math style="vertical-align: 0px">\lambda.</math>
 +
|-
 +
|In this case, we say that &nbsp;<math style="vertical-align: 0px">\lambda</math>&nbsp; is an eigenvalue of &nbsp;<math style="vertical-align: 0px">A.</math>
 
|}
 
|}
  
Line 19: Line 20:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a triangular matrix, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are the entries on the diagonal.
 +
|-
 +
|So, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">1,-1,</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">2.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{bmatrix}
 +
          1  \\
 +
          0 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          0  \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          0  \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}</math>
 +
|-
 +
|where each eigenvector has eigenvalue &nbsp;<math style="vertical-align: -4px">1,-1</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">2,</math>&nbsp; respectively.
 
|}
 
|}
  
Line 32: Line 52:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; The eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">1,-1</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">2,</math>&nbsp; and the corresponding eigenvectors are
 +
|-
 +
|
 +
::<math>\begin{bmatrix}
 +
          1  \\
 +
          0 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          0  \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          0  \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}.</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:53, 15 October 2017

Find the eigenvalues and eigenvectors of the matrix  

Foundations:  
An eigenvector of a matrix    is a nonzero vector    such that    for some scalar  
In this case, we say that    is an eigenvalue of  


Solution:

Step 1:  
Since    is a triangular matrix, the eigenvalues of    are the entries on the diagonal.
So, the eigenvalues of    are    and  
Step 2:  
Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of    are
where each eigenvector has eigenvalue    and    respectively.


Final Answer:  
       The eigenvalues of    are    and    and the corresponding eigenvectors are

Return to Review Problems