Difference between revisions of "031 Review Part 2, Problem 7"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| (3 intermediate revisions by the same user not shown) | |||
| Line 24: | Line 24: | ||
-1 & 1 | -1 & 1 | ||
\end{bmatrix}.</math> Find <math style="vertical-align: -4px">AB,~BA^T</math> and <math style="vertical-align: 0px">A-B^T.</math> | \end{bmatrix}.</math> Find <math style="vertical-align: -4px">AB,~BA^T</math> and <math style="vertical-align: 0px">A-B^T.</math> | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |A map <math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math> is a linear transformation if | ||
| + | |- | ||
| + | | | ||
| + | ::<math>T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})</math> | ||
| + | |- | ||
| + | | | ||
| + | :and | ||
| + | |- | ||
| + | | | ||
| + | ::<math>T(a\vec{x})=aT(\vec{x})</math> | ||
|- | |- | ||
| | | | ||
| + | :for all <math style="vertical-align: -4px">\vec{x},\vec{y}\in \mathbb{R}^n</math> and all <math style="vertical-align: -1px">a\in \mathbb{R}.</math> | ||
|} | |} | ||
| Line 39: | Line 50: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |We claim that <math style="vertical-align: 0px">T</math> is not a linear transformation. | ||
| + | |- | ||
| + | |Consider the vectors <math style="vertical-align: -20px">\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math> and <math style="vertical-align: -20px">\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 1 | ||
| + | \end{bmatrix}.</math> | ||
| + | |- | ||
| + | |Then, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 0 | ||
| + | \end{bmatrix}+\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 2 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |On the other hand, notice | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 0 | ||
| + | \end{bmatrix}\bigg)+T\bigg(\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg)} & = & \displaystyle{\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 1 | ||
| + | \end{bmatrix}+\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 1 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | 2\\ | ||
| + | 2 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |So, now we know | ||
| + | |- | ||
| + | | | ||
| + | ::<math>T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 0 | ||
| + | \end{bmatrix}+\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg)\neq T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 0 | ||
| + | \end{bmatrix}\bigg)+T\bigg(\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg).</math> | ||
| + | |- | ||
| + | |Therefore, <math style="vertical-align: 0px">T</math> is not a linear transformation. | ||
|} | |} | ||
| Line 53: | Line 134: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |Using the row-column rule for multiplication, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{AB} & = & \displaystyle{\begin{bmatrix} | ||
| + | 1 & -3 & 0 \\ | ||
| + | -4 & 1 &1 | ||
| + | \end{bmatrix}\begin{bmatrix} | ||
| + | 2 & 1\\ | ||
| + | 1 & 0 \\ | ||
| + | -1 & 1 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | 1(2)+-3(1)+0(-1) & 1(1)+-3(0)+0(1)\\ | ||
| + | -4(2)+1(1)+1(-1) & -4(1)+1(0)+1(1) | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | -1 & 1\\ | ||
| + | -8 & -3 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, <math style="vertical-align: 0px">B</math> and <math style="vertical-align: 0px">A^T</math> are both <math style="vertical-align: 0px">3\times 2</math> matrices. | ||
| + | |- | ||
| + | |Hence, <math style="vertical-align: 0px">BA^T</math> is undefined. | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |For <math style="vertical-align: -5px">A-B^T,</math> we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A-B^T} & = & \displaystyle{\begin{bmatrix} | ||
| + | 1 & -3 & 0 \\ | ||
| + | -4 & 1 &1 | ||
| + | \end{bmatrix}-\begin{bmatrix} | ||
| + | 2 & 1 & -1\\ | ||
| + | 1 & 0 & 1\\ | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | -1 & -4 & 1\\ | ||
| + | -5 & 1 & 0 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 67: | Line 194: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' <math style="vertical-align: 0px">T</math> is not a linear transformation |
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: -20px">AB=\begin{bmatrix} |
| + | -1 & 1\\ | ||
| + | -8 & -3 | ||
| + | \end{bmatrix},</math> <math style="vertical-align: -1px">BA^T</math> is undefined and <math style="vertical-align: -20px">A-B^T=\begin{bmatrix} | ||
| + | -1 & -4 & 1\\ | ||
| + | -5 & 1 & 0 | ||
| + | \end{bmatrix}</math> | ||
|} | |} | ||
| − | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 12:36, 15 October 2017
(a) Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T:\mathbb{R}^2\rightarrow \mathbb{R}^2} be a transformation given by
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T\bigg( \begin{bmatrix} x \\ y \end{bmatrix} \bigg)= \begin{bmatrix} 1-xy \\ x+y \end{bmatrix}.}
Determine whether Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is a linear transformation. Explain.
(b) Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 1 & -3 & 0 \\ -4 & 1 &1 \end{bmatrix}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B= \begin{bmatrix} 2 & 1\\ 1 & 0 \\ -1 & 1 \end{bmatrix}.} Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB,~BA^T} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-B^T.}
| Foundations: |
|---|
| A map Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T:\mathbb{R}^n\rightarrow \mathbb{R}^m} is a linear transformation if |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We claim that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is not a linear transformation. |
| Consider the vectors Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 1\\ 0 \end{bmatrix}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 0\\ 1 \end{bmatrix}.} |
| Then, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{T\bigg(\begin{bmatrix} 1\\ 0 \end{bmatrix}+\begin{bmatrix} 0\\ 1 \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} 1\\ 1 \end{bmatrix}\bigg)}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 0\\ 2 \end{bmatrix}.} \end{array}} |
| Step 2: |
|---|
| On the other hand, notice |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{T\bigg(\begin{bmatrix} 1\\ 0 \end{bmatrix}\bigg)+T\bigg(\begin{bmatrix} 0\\ 1 \end{bmatrix}\bigg)} & = & \displaystyle{\begin{bmatrix} 1\\ 1 \end{bmatrix}+\begin{bmatrix} 1\\ 1 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 2\\ 2 \end{bmatrix}.} \end{array}} |
| So, now we know |
|
| Therefore, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is not a linear transformation. |
(b)
| Step 1: |
|---|
| Using the row-column rule for multiplication, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{AB} & = & \displaystyle{\begin{bmatrix} 1 & -3 & 0 \\ -4 & 1 &1 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 1 & 0 \\ -1 & 1 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 1(2)+-3(1)+0(-1) & 1(1)+-3(0)+0(1)\\ -4(2)+1(1)+1(-1) & -4(1)+1(0)+1(1) \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} -1 & 1\\ -8 & -3 \end{bmatrix}.} \end{array}} |
| Step 2: |
|---|
| Now, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^T} are both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\times 2} matrices. |
| Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BA^T} is undefined. |
| Step 3: |
|---|
| For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-B^T,} we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A-B^T} & = & \displaystyle{\begin{bmatrix} 1 & -3 & 0 \\ -4 & 1 &1 \end{bmatrix}-\begin{bmatrix} 2 & 1 & -1\\ 1 & 0 & 1\\ \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} -1 & -4 & 1\\ -5 & 1 & 0 \end{bmatrix}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is not a linear transformation |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB=\begin{bmatrix} -1 & 1\\ -8 & -3 \end{bmatrix},} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BA^T} is undefined and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-B^T=\begin{bmatrix} -1 & -4 & 1\\ -5 & 1 & 0 \end{bmatrix}} |