Difference between revisions of "031 Review Part 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 21: | Line 21: | ||
3 | 3 | ||
\end{bmatrix}</math> in the range of <math style="vertical-align: 0px">T?</math> Explain. | \end{bmatrix}</math> in the range of <math style="vertical-align: 0px">T?</math> Explain. | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |'''1.''' The standard matrix of a linear transformation <math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math> is given by | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{bmatrix} | ||
+ | T(\vec{e_1}) & T(\vec{e_2}) & \cdots & T(\vec{e_n}) | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |- | ||
+ | | | ||
+ | :where <math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math> is the standard basis of <math style="vertical-align: -1px">\mathbb{R}^n.</math> | ||
+ | |- | ||
+ | |'''2.''' A vector <math style="vertical-align: 0px">\vec{v}</math> is in the image of <math style="vertical-align: 0px">T</math> if there exists <math style="vertical-align: 0px">\vec{x}</math> such that | ||
+ | |- | ||
+ | | | ||
+ | ::<math>T(\vec{x})=\vec{v}.</math> | ||
|} | |} | ||
Line 36: | Line 49: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Notice, we have | ||
|- | |- | ||
| | | | ||
+ | ::<math>T(\vec{e_1})= | ||
+ | \begin{bmatrix} | ||
+ | 5 \\ | ||
+ | -1 | ||
+ | \end{bmatrix},~T(\vec{e_2})= | ||
+ | \begin{bmatrix} | ||
+ | -2.5 \\ | ||
+ | 0.5 | ||
+ | \end{bmatrix},\text{ and }T(\vec{e_3})= | ||
+ | \begin{bmatrix} | ||
+ | 10 \\ | ||
+ | -2 | ||
+ | \end{bmatrix}.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |So, the standard matrix of <math style="vertical-align: 0px">T</math> is | ||
|- | |- | ||
| | | | ||
+ | ::<math>[T]=\begin{bmatrix} | ||
+ | 5 & -2.5 &10 \\ | ||
+ | -1 & 0.5 & -2 | ||
+ | \end{bmatrix}.</math> | ||
|} | |} | ||
Line 50: | Line 84: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Since <math style="vertical-align: 0px">T</math> is a linear transformation, we know | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{T(\vec{u})} & = & \displaystyle{T(7\vec{e_1}-4\vec{e_2})}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{T(7\vec{e_1})-T(4\vec{e_2})}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{7T(\vec{e_1})-4T(\vec{e_2}).} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{T(\vec{u})} & = & \displaystyle{7\begin{bmatrix} | ||
+ | 5 \\ | ||
+ | -1 | ||
+ | \end{bmatrix}-4\begin{bmatrix} | ||
+ | -2.5 \\ | ||
+ | 0.5 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 35 \\ | ||
+ | -7 | ||
+ | \end{bmatrix}+\begin{bmatrix} | ||
+ | 10 \\ | ||
+ | -2 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 45 \\ | ||
+ | -9 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 64: | Line 131: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |To answer this question, we augment the standard matrix of <math style="vertical-align: -1px">T</math> with this vector and row reduce this matrix. | ||
+ | |- | ||
+ | |So, we have the matrix | ||
|- | |- | ||
| | | | ||
+ | ::<math>\left[\begin{array}{ccc|c} | ||
+ | 5 & -2.5 & 10 & -1\\ | ||
+ | -1 & 0.5 & -2 & 3 | ||
+ | \end{array}\right].</math> | ||
|} | |} | ||
Line 72: | Line 147: | ||
|- | |- | ||
| | | | ||
+ | Now, row reducing this matrix, we have | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\left[\begin{array}{ccc|c} | ||
+ | 5 & -2.5 & 10 & -1\\ | ||
+ | -1 & 0.5 & -2 & 3 | ||
+ | \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|c} | ||
+ | 5 & -2.5 & 10 & -1\\ | ||
+ | -5 & 2.5 & -10 & 15 | ||
+ | \end{array}\right]}\\ | ||
+ | &&\\ | ||
+ | & \sim & \displaystyle{\left[\begin{array}{ccc|c} | ||
+ | 5 & -2.5 & 10 & -1\\ | ||
+ | 0 & 0 & 0 & 14 | ||
+ | \end{array}\right].} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |From here, we can tell that the corresponding system is inconsistent. | ||
+ | |- | ||
+ | |Hence, this vector is not in the range of <math style="vertical-align: 0px">T.</math> | ||
|} | |} | ||
Line 78: | Line 174: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math>[T]=\begin{bmatrix} |
+ | 5 & -2.5 &10 \\ | ||
+ | -1 & 0.5 & -2 | ||
+ | \end{bmatrix}</math> | ||
+ | |- | ||
+ | | '''(b)''' <math>\begin{bmatrix} | ||
+ | 45 \\ | ||
+ | -9 | ||
+ | \end{bmatrix}</math> | ||
|- | |- | ||
− | | '''( | + | | '''(c)''' No, see above |
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:27, 15 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
Foundations: |
---|
1. The standard matrix of a linear transformation is given by |
|
|
2. A vector is in the image of if there exists such that |
|
Solution:
(a)
Step 1: |
---|
Notice, we have |
|
Step 2: |
---|
So, the standard matrix of is |
|
(b)
Step 1: |
---|
Since is a linear transformation, we know |
|
Step 2: |
---|
Now, we have |
|
(c)
Step 1: |
---|
To answer this question, we augment the standard matrix of with this vector and row reduce this matrix. |
So, we have the matrix |
|
Step 2: |
---|
Now, row reducing this matrix, we have |
|
From here, we can tell that the corresponding system is inconsistent. |
Hence, this vector is not in the range of |
Final Answer: |
---|
(a) |
(b) |
(c) No, see above |