Difference between revisions of "031 Review Part 3, Problem 11"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| (3 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam">Suppose <math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math> is a basis of the eigenspace corresponding to the eigenvalue 0 of a <math style="vertical-align: 0px">5\times 5</math> matrix <math style="vertical-align: 0px">A.</math> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <span class="exam">(a) Is <math style="vertical-align: 0px">\vec{w}=\vec{u}-2\vec{v}</math> an eigenvector of <math style="vertical-align: 0px">A?</math> If so, find the corresponding eigenvalue. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | <span class="exam">(a) | ||
| − | <span class="exam"> | + | <span class="exam">If not, explain why. |
| + | <span class="exam">(b) Find the dimension of <math style="vertical-align: -1px">\text{Col }A.</math> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |'''1.''' An eigenvector <math style="vertical-align: 0px">\vec{x}</math> of a matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: 0px">\lambda</math> is a nonzero vector such that | ||
| + | |- | ||
| + | | | ||
| + | ::<math>A\vec{x}=\lambda\vec{x}.</math> | ||
| + | |- | ||
| + | |'''2.''' By the Rank Theorem, if <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">m\times n</math> matrix, then | ||
|- | |- | ||
| | | | ||
| + | ::<math>\text{rank }A+\text{dim Col }A=n.</math> | ||
|} | |} | ||
| Line 31: | Line 28: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |First, notice | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\vec{w}\ne \vec{0}</math> | ||
| + | |- | ||
| + | |since <math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math> is a basis of the eigenspace corresponding to the eigenvalue 0 of <math style="vertical-align: 0px">A.</math> | ||
| + | |- | ||
| + | |Also, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math style="vertical-align: -1px">A\vec{u}=\vec{0}</math> and <math style="vertical-align: 0px">A\vec{v}=\vec{0}</math> | ||
| + | |- | ||
| + | |since <math style="vertical-align: 0px">\vec{u}</math> and <math style="vertical-align: 0px">\vec{v}</math> are eigenvectors of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 0. | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A\vec{w}} & = & \displaystyle{A(\vec{u}-2\vec{v})}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{A\vec{u}-2A\vec{v}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\vec{0}-2\cdot \vec{0}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\vec{0}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Hence, <math style="vertical-align: 0px">\vec{w}</math> is an eigenvector of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: 0px">0.</math> | ||
|} | |} | ||
| Line 45: | Line 67: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |Since <math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math> is a basis for the eigenspace of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 0, we know that | ||
|- | |- | ||
| | | | ||
| + | ::<math>\text{dim Nul }A=2.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Then, by the Rank Theorem, we have | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{5} & = & \displaystyle{\text{dim Col }A+\text{dim Nul }A}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\text{dim Col }A+2.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Hence, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\text{dim Col }A=3.</math> | ||
|} | |} | ||
| Line 59: | Line 95: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' See solution above. |
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: -3px">\text{dim Col }A=3</math> |
|} | |} | ||
| − | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 14:14, 15 October 2017
Suppose is a basis of the eigenspace corresponding to the eigenvalue 0 of a matrix
(a) Is an eigenvector of If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of
| Foundations: |
|---|
| 1. An eigenvector of a matrix corresponding to the eigenvalue is a nonzero vector such that |
|
|
| 2. By the Rank Theorem, if is a matrix, then |
|
|
Solution:
(a)
| Step 1: |
|---|
| First, notice |
|
|
| since is a basis of the eigenspace corresponding to the eigenvalue 0 of |
| Also, we have |
|
| since and are eigenvectors of corresponding to the eigenvalue 0. |
| Step 2: |
|---|
| Now, we have |
|
|
| Hence, is an eigenvector of corresponding to the eigenvalue |
(b)
| Step 1: |
|---|
| Since is a basis for the eigenspace of corresponding to the eigenvalue 0, we know that |
|
|
| Step 2: |
|---|
| Then, by the Rank Theorem, we have |
| Hence, we have |
|
|
| Final Answer: |
|---|
| (a) See solution above. |
| (b) |