Difference between revisions of "031 Review Part 3, Problem 10"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| (3 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam">Show that if <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of the matrix product <math style="vertical-align: 0px">AB</math> and <math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math> then <math style="vertical-align: 0px">B\vec{x}</math> is an eigenvector of <math style="vertical-align: 0px">BA.</math> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |An eigenvector <math style="vertical-align: 0px">\vec{x}</math> of a matrix <math style="vertical-align: 0px">A</math> is a nonzero vector such that | ||
|- | |- | ||
| | | | ||
| + | ::<math>A\vec{x}=\lambda\vec{x}</math> | ||
| + | |- | ||
| + | |for some scalar <math style="vertical-align: 0px">\lambda.</math> | ||
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
| − | |||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |Since <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: -4px">AB,</math> we know <math style="vertical-align: -5px">\vec{x}\neq \vec{0}</math> and | ||
|- | |- | ||
| | | | ||
| − | + | ::<math>AB(\vec{x})=\lambda\vec{x}</math> | |
| − | + | |- | |
| − | + | |for some scalar <math style="vertical-align: 0px">\lambda.</math> | |
| − | |||
|- | |- | ||
| − | | | + | |Using associativity of matrix multiplication, we have |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| + | ::<math>A(B\vec{x})=\lambda\vec{x}.</math> | ||
|} | |} | ||
| Line 52: | Line 34: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we have |
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{BA(B\vec{x})} & = & \displaystyle{B(A(B\vec{x}))}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{B(\lambda \vec{x})}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lambda B\vec{x}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Since <math style="vertical-align: -5px">B\vec{x}\neq \vec{0},</math> we can conclude that <math style="vertical-align: 0px">B\vec{x}</math> is an eigenvector of <math style="vertical-align: 0px">AB.</math> | ||
|} | |} | ||
| Line 59: | Line 51: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | See solution above. |
| − | |||
| − | |||
|} | |} | ||
| − | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 14:09, 15 October 2017
Show that if is an eigenvector of the matrix product and then is an eigenvector of
| Foundations: |
|---|
| An eigenvector of a matrix is a nonzero vector such that |
|
|
| for some scalar |
Solution:
| Step 1: |
|---|
| Since is an eigenvector of we know and |
|
|
| for some scalar |
| Using associativity of matrix multiplication, we have |
|
|
| Step 2: |
|---|
| Now, we have |
| Since we can conclude that is an eigenvector of |
| Final Answer: |
|---|
| See solution above. |