Difference between revisions of "031 Review Part 3, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=   
+
<span class="exam">Assume &nbsp;<math style="vertical-align: 0px">A^2=I.</math>&nbsp; Find &nbsp;<math style="vertical-align: -1px">\text{Nul }A.</math>
    \begin{bmatrix}
 
          1 & -4 & 9 & -7 \\
 
          -1 & 2 & -4 & 1 \\
 
          5 & -6 & 10 & 7
 
        \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
 
 
 
::<math>B=   
 
    \begin{bmatrix}
 
          1 & 0 & -1 & 5 \\
 
          0 & -2  & 5 & -6 \\
 
          0 & 0 & 0 & 0
 
        \end{bmatrix}.</math>     
 
   
 
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
 
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
 
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|
+
|Recall that the subspace &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is the set of all solutions to &nbsp;<math style="vertical-align: 0px">A\vec{x}=\vec{0}.</math>
 
|}
 
|}
  
  
 
'''Solution:'''
 
'''Solution:'''
 
'''(a)'''
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: -4px">A\cdot A=I,</math>&nbsp; we know that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible.
 +
|-
 +
|Additionally, since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, we know that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is row equivalent to the identity matrix.
 
|}
 
|}
  
Line 38: Line 21:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is row equivalent to the identity matrix, the only solution to &nbsp;<math style="vertical-align: 0px">A\vec{x}=\vec{0}</math>&nbsp; is the trivial solution.
|}
 
 
 
'''(b)'''
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
 
|-
 
|-
|
+
|Hence,
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
 
|-
 
|-
 
|
 
|
 +
::<math>\text{Nul }A=\Bigg\{\begin{bmatrix}
 +
          0 \\
 +
          0
 +
        \end{bmatrix}\Bigg\}.</math>
 
|}
 
|}
  
Line 59: Line 36:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; <math>\text{Nul }A=\Bigg\{\begin{bmatrix}
|-
+
          0 \\
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;
+
          0
 +
        \end{bmatrix}\Bigg\}</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 14:07, 15 October 2017

Assume    Find  

Foundations:  
Recall that the subspace    is the set of all solutions to  


Solution:

Step 1:  
Since    we know that    is invertible.
Additionally, since    is invertible, we know that    is row equivalent to the identity matrix.
Step 2:  
Since    is row equivalent to the identity matrix, the only solution to    is the trivial solution.
Hence,


Final Answer:  
      

Return to Review Problems