Difference between revisions of "031 Review Part 3, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Give an example of a <math style="vertical-align: 0px">3\times 3</math> matrix <math style="vertical-align: 0px">A</math> with eigenvalues 5,-1 and 3. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |The eigenvalues of a diagonal matrix are the entries on the diagonal. |
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! |
|- | |- | ||
− | | | + | |One example of such a matrix is |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
− | + | ::<math>A=\left[\begin{array}{ccc} | |
− | + | 5 & 0 & 0\\ | |
− | + | 0 & -1 & 0\\ | |
− | + | 0 & 0 & 3 | |
− | { | + | \end{array}\right].</math> |
− | |||
|- | |- | ||
− | | | + | |Since <math style="vertical-align: 0px">A</math> is a diagonal matrix, the eigenvalues of <math style="vertical-align: 0px">A</math> are the entries on the diagonal. |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Hence, the eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">5,-1,3.</math> |
|} | |} | ||
Line 59: | Line 31: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | One example is <math style="vertical-align: -31px">A=\left[\begin{array}{ccc} |
− | + | 5 & 0 & 0\\ | |
− | + | 0 & -1 & 0\\ | |
+ | 0 & 0 & 3 | ||
+ | \end{array}\right].</math> | ||
|} | |} | ||
− | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 14:06, 15 October 2017
Give an example of a matrix with eigenvalues 5,-1 and 3.
Foundations: |
---|
The eigenvalues of a diagonal matrix are the entries on the diagonal. |
Solution:
One example of such a matrix is |
|
Since is a diagonal matrix, the eigenvalues of are the entries on the diagonal. |
Hence, the eigenvalues of are |
Final Answer: |
---|
One example is |