Difference between revisions of "031 Review Part 3, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Let <math>A=\begin{bmatrix} |
− | + | 3 & 0 & -1 \\ | |
− | + | 0 & 1 &-3\\ | |
− | + | 1 & 0 & 0 | |
− | + | \end{bmatrix}\begin{bmatrix} | |
− | \end{bmatrix} | + | 3 & 0 & 0 \\ |
− | + | 0 & 4 &0\\ | |
− | + | 0 & 0 & 3 | |
− | + | \end{bmatrix}\begin{bmatrix} | |
− | + | 0 & 0 & 1 \\ | |
− | 0 & | + | -3 & 1 &9\\ |
− | 0 & 0 & | + | -1 & 0 & 3 |
− | \end{bmatrix} | + | \end{bmatrix}.</math> |
− | |||
− | |||
− | |||
− | |||
+ | <span class="exam">Use the Diagonalization Theorem to find the eigenvalues of <math style="vertical-align: 0px">A</math> and a basis for each eigenspace. | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''Diagonalization Theorem''' |
+ | |- | ||
+ | |An <math style="vertical-align: 0px">n\times n</math> matrix <math style="vertical-align: 0px">A</math> is diagonalizable if and only if <math style="vertical-align: 0px">A</math> has <math style="vertical-align: 0px">n</math> linearly independent eigenvectors. | ||
+ | |- | ||
+ | |In fact, <math style="vertical-align: -4px">A=PDP^{-1},</math> with <math style="vertical-align: 0px">D</math> a diagonal matrix, if and only if the columns of <math style="vertical-align: 0px">P</math> are <math style="vertical-align: 0px">n</math> linearly | ||
+ | |- | ||
+ | |independent eigenvectors of <math style="vertical-align: 0px">A.</math> In this case, the diagonal entries of <math style="vertical-align: 0px">D</math> are eigenvalues of <math style="vertical-align: 0px">A</math> that | ||
+ | |- | ||
+ | |correspond, respectively , to the eigenvectors in <math style="vertical-align: 0px">P.</math> | ||
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Since | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{bmatrix} | ||
+ | 3 & 0 & 0 \\ | ||
+ | 0 & 4 &0\\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix}</math> | ||
+ | |- | ||
+ | |is a diagonal matrix, the eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: 0px">3</math> and <math style="vertical-align: -1px">4</math> by the Diagonalization Theorem. | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |By the Diagonalization Theorem, a basis for the eigenspace corresponding | ||
+ | |- | ||
+ | |to the eigenvalue <math style="vertical-align: 0px">3</math> is | ||
|- | |- | ||
| | | | ||
− | + | ::<math>\Bigg\{\begin{bmatrix} | |
− | + | 3 \\ | |
− | + | 0 \\ | |
− | + | 1 | |
− | { | + | \end{bmatrix},\begin{bmatrix} |
− | + | -1 \\ | |
+ | -3\\ | ||
+ | 0 | ||
+ | \end{bmatrix}\Bigg\}</math> | ||
|- | |- | ||
− | | | + | |and a basis for the eigenspace corresponding to the eigenvalue <math style="vertical-align: -1px">4</math> is |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
+ | ::<math>\Bigg\{\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 1 \\ | ||
+ | 1 | ||
+ | \end{bmatrix}\Bigg\}.</math> | ||
|} | |} | ||
Line 59: | Line 79: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | The eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: 0px">3</math> and <math style="vertical-align: -1px">4.</math> |
+ | |- | ||
+ | | A basis for the eigenspace corresponding | ||
+ | |- | ||
+ | | to the eigenvalue <math style="vertical-align: 0px">3</math> is | ||
|- | |- | ||
− | | | + | | |
+ | ::::<math>\Bigg\{\begin{bmatrix} | ||
+ | 3 \\ | ||
+ | 0 \\ | ||
+ | 1 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | -1 \\ | ||
+ | -3\\ | ||
+ | 0 | ||
+ | \end{bmatrix}\Bigg\}</math> | ||
+ | |- | ||
+ | | and a basis for the eigenspace corresponding to the eigenvalue <math style="vertical-align: -1px">4</math> is | ||
+ | |- | ||
+ | | | ||
+ | ::::<math>\Bigg\{\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 1 \\ | ||
+ | 1 | ||
+ | \end{bmatrix}\Bigg\}.</math> | ||
|} | |} | ||
− | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 14:03, 15 October 2017
Let
Use the Diagonalization Theorem to find the eigenvalues of and a basis for each eigenspace.
Foundations: |
---|
Diagonalization Theorem |
An matrix is diagonalizable if and only if has linearly independent eigenvectors. |
In fact, with a diagonal matrix, if and only if the columns of are linearly |
independent eigenvectors of In this case, the diagonal entries of are eigenvalues of that |
correspond, respectively , to the eigenvectors in |
Solution:
Step 1: |
---|
Since |
|
is a diagonal matrix, the eigenvalues of are and by the Diagonalization Theorem. |
Step 2: |
---|
By the Diagonalization Theorem, a basis for the eigenspace corresponding |
to the eigenvalue is |
|
and a basis for the eigenspace corresponding to the eigenvalue is |
|
Final Answer: |
---|
The eigenvalues of are and |
A basis for the eigenspace corresponding |
to the eigenvalue is |
|
and a basis for the eigenspace corresponding to the eigenvalue is |
|