Difference between revisions of "031 Review Part 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=  
+
<span class="exam"> Let &nbsp;<math>W=\text{Span }\Bigg\{\begin{bmatrix}
    \begin{bmatrix}
+
           2 \\
           1 & -4 & 9 & -7 \\
+
          0 \\
           -1 & 2  & -4 & 1 \\
+
           -1 \\
           5 & -6 & 10 & 7
+
           0
         \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
+
         \end{bmatrix},\begin{bmatrix}
 
+
           -3 \\
::<math>B=   
+
          1 \\
    \begin{bmatrix}
+
           0 \\
           1 & 0 & -1 & 5 \\
+
           0
           0 & -2  & 5 & -6 \\
+
         \end{bmatrix}\Bigg\}.</math>&nbsp; Is &nbsp;<math>\begin{bmatrix}
           0 & 0 & 0 & 0  
+
          2 \\
         \end{bmatrix}.</math>     
+
          6 \\
   
+
          4 \\
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
+
          0
 
+
        \end{bmatrix}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">W^\perp?</math>&nbsp; Explain.
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
 
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 +
|-
 +
|Recall that if &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; is a subspace of &nbsp;<math style="vertical-align: -4px">\mathbb{R}^n,</math>&nbsp; then
 
|-
 
|-
 
|
 
|
 +
::<math>W^\perp=\{ \vec{v}\in \mathbb{R}^n ~: ~ \vec{v}\cdot \vec{w}=0 \text{ for all }w\in W\}.</math>
 
|}
 
|}
  
  
 
'''Solution:'''
 
'''Solution:'''
 
'''(a)'''
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1: &nbsp;  
+
!Step 1: &nbsp;
 +
|-
 +
|To determine whether the vector
 +
|-
 +
|
 +
::<math>\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}</math>
 +
|-
 +
|is in  &nbsp;<math style="vertical-align: -4px">W^\perp,</math>&nbsp; it suffices to see if this vector is orthogonal to
 +
|-
 +
|the basis elements of &nbsp;<math style="vertical-align: 0px">W.</math>
 +
|-
 +
|Notice that we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}\cdot \begin{bmatrix}
 +
          2 \\
 +
          0 \\
 +
          -1 \\
 +
          0
 +
        \end{bmatrix}} & = & \displaystyle{2(2)+6(0)+4(-1)+0(0)}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Additionally, we have
 
|-
 
|-
 
|
 
|
|}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
+
\displaystyle{\begin{bmatrix}
'''(b)'''
+
          2 \\
 
+
          6 \\
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
          4 \\
!Step 1: &nbsp;
+
          0
 +
        \end{bmatrix}\cdot \begin{bmatrix}
 +
          -3 \\
 +
          1 \\
 +
          0 \\
 +
          0
 +
        \end{bmatrix}} & = & \displaystyle{2(-3)+6(1)+4(0)+0(0)}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|Hence, we conclude
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}\in W^\perp.</math>
 
|}
 
|}
  
Line 59: Line 102:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{bmatrix}
|-
+
          2 \\
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;
+
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}\in W^\perp</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:56, 15 October 2017

Let    Is    in    Explain.

Foundations:  
Recall that if    is a subspace of    then


Solution:

Step 1:  
To determine whether the vector
is in    it suffices to see if this vector is orthogonal to
the basis elements of  
Notice that we have

       

Step 2:  
Additionally, we have

       

Hence, we conclude


Final Answer:  
       

Return to Review Problems