Difference between revisions of "031 Review Part 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| (4 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam"> Find the eigenvalues and eigenvectors of the matrix <math style="vertical-align: -31px">A= |
\begin{bmatrix} | \begin{bmatrix} | ||
| − | 1 & | + | 1 & 1 & 1 \\ |
| − | + | 0 & -1 & 1 \\ | |
| − | + | 0 & 0 & 2 | |
| − | + | \end{bmatrix}.</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | 0 & 0 & | ||
| − | \end{bmatrix}.</math> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |An eigenvector of a matrix <math style="vertical-align: 0px">A</math> is a nonzero vector <math style="vertical-align: 0px">\vec{x}</math> such that <math style="vertical-align: 0px">A\vec{x}=\lambda\vec{x}</math> for some scalar <math style="vertical-align: 0px">\lambda.</math> |
| + | |- | ||
| + | |In this case, we say that <math style="vertical-align: 0px">\lambda</math> is an eigenvalue of <math style="vertical-align: 0px">A.</math> | ||
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
| − | |||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |Since <math style="vertical-align: 0px">A</math> is a triangular matrix, the eigenvalues of <math style="vertical-align: 0px">A</math> are the entries on the diagonal. |
| + | |- | ||
| + | |So, the eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">1,-1,</math> and <math style="vertical-align: 0px">2.</math> | ||
|} | |} | ||
| Line 38: | Line 28: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of <math style="vertical-align: 0px">A</math> are |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| − | + | ::<math>\begin{bmatrix} | |
| − | + | 1 \\ | |
| − | { | + | 0 \\ |
| − | + | 0 | |
| + | \end{bmatrix},\begin{bmatrix} | ||
| + | 0 \\ | ||
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix},\begin{bmatrix} | ||
| + | 0 \\ | ||
| + | 0 \\ | ||
| + | 1 | ||
| + | \end{bmatrix}</math> | ||
|- | |- | ||
| − | | | + | |where each eigenvector has eigenvalue <math style="vertical-align: -4px">1,-1</math> and <math style="vertical-align: -4px">2,</math> respectively. |
|} | |} | ||
| Line 59: | Line 52: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | The eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">1,-1</math> and <math style="vertical-align: -4px">2,</math> and the corresponding eigenvectors are |
|- | |- | ||
| − | | | + | | |
| + | ::<math>\begin{bmatrix} | ||
| + | 1 \\ | ||
| + | 0 \\ | ||
| + | 0 | ||
| + | \end{bmatrix},\begin{bmatrix} | ||
| + | 0 \\ | ||
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix},\begin{bmatrix} | ||
| + | 0 \\ | ||
| + | 0 \\ | ||
| + | 1 | ||
| + | \end{bmatrix}.</math> | ||
|} | |} | ||
| − | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:53, 15 October 2017
Find the eigenvalues and eigenvectors of the matrix
| Foundations: |
|---|
| An eigenvector of a matrix is a nonzero vector such that for some scalar |
| In this case, we say that is an eigenvalue of |
Solution:
| Step 1: |
|---|
| Since is a triangular matrix, the eigenvalues of are the entries on the diagonal. |
| So, the eigenvalues of are and |
| Step 2: |
|---|
| Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of are |
|
|
| where each eigenvector has eigenvalue and respectively. |
| Final Answer: |
|---|
| The eigenvalues of are and and the corresponding eigenvectors are |
|
|