Difference between revisions of "031 Review Part 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> Find the eigenvalues and eigenvectors of the matrix <math style="vertical-align: -31px">A= |
\begin{bmatrix} | \begin{bmatrix} | ||
− | 1 & | + | 1 & 1 & 1 \\ |
− | + | 0 & -1 & 1 \\ | |
− | + | 0 & 0 & 2 | |
− | + | \end{bmatrix}.</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | 0 & 0 & | ||
− | \end{bmatrix}.</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |An eigenvector of a matrix <math style="vertical-align: 0px">A</math> is a nonzero vector <math style="vertical-align: 0px">\vec{x}</math> such that <math style="vertical-align: 0px">A\vec{x}=\lambda\vec{x}</math> for some scalar <math style="vertical-align: 0px">\lambda.</math> |
+ | |- | ||
+ | |In this case, we say that <math style="vertical-align: 0px">\lambda</math> is an eigenvalue of <math style="vertical-align: 0px">A.</math> | ||
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Since <math style="vertical-align: 0px">A</math> is a triangular matrix, the eigenvalues of <math style="vertical-align: 0px">A</math> are the entries on the diagonal. |
+ | |- | ||
+ | |So, the eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">1,-1,</math> and <math style="vertical-align: 0px">2.</math> | ||
|} | |} | ||
Line 38: | Line 28: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of <math style="vertical-align: 0px">A</math> are |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
− | + | ::<math>\begin{bmatrix} | |
− | + | 1 \\ | |
− | { | + | 0 \\ |
− | + | 0 | |
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 0 \\ | ||
+ | 1 | ||
+ | \end{bmatrix}</math> | ||
|- | |- | ||
− | | | + | |where each eigenvector has eigenvalue <math style="vertical-align: -4px">1,-1</math> and <math style="vertical-align: -4px">2,</math> respectively. |
|} | |} | ||
Line 59: | Line 52: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | The eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">1,-1</math> and <math style="vertical-align: -4px">2,</math> and the corresponding eigenvectors are |
|- | |- | ||
− | | | + | | |
+ | ::<math>\begin{bmatrix} | ||
+ | 1 \\ | ||
+ | 0 \\ | ||
+ | 0 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 0 \\ | ||
+ | 1 | ||
+ | \end{bmatrix}.</math> | ||
|} | |} | ||
− | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:53, 15 October 2017
Find the eigenvalues and eigenvectors of the matrix
Foundations: |
---|
An eigenvector of a matrix is a nonzero vector such that for some scalar |
In this case, we say that is an eigenvalue of |
Solution:
Step 1: |
---|
Since is a triangular matrix, the eigenvalues of are the entries on the diagonal. |
So, the eigenvalues of are and |
Step 2: |
---|
Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of are |
|
where each eigenvector has eigenvalue and respectively. |
Final Answer: |
---|
The eigenvalues of are and and the corresponding eigenvectors are |
|