Difference between revisions of "031 Review Part 2, Problem 4"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  (Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A=         \begin{bmatrix}            1 & -4 & 9 & -7 \\            -1 & 2  & -4 & 1 \\...")  | 
				Kayla Murray (talk | contribs)   | 
				||
| (5 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam">  | + | <span class="exam"> Suppose  <math style="vertical-align: 0px">T</math>  is a linear transformation given by the formula   | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| + | ::<math>T\Bigg(  | ||
| + | \begin{bmatrix}  | ||
| + |            x_1 \\  | ||
| + |            x_2 \\  | ||
| + |            x_3 \\  | ||
| + |          \end{bmatrix}  | ||
| + |          \Bigg)=  | ||
| + |  \begin{bmatrix}  | ||
| + |            5x_1-2.5x_2+10x_3 \\  | ||
| + |            -x_1+0.5x_2-2x_3  | ||
| + |          \end{bmatrix}</math>  | ||
| + | |||
| + | <span class="exam">(a) Find the standard matrix for  <math style="vertical-align: 0px">T.</math>  | ||
| + | |||
| + | <span class="exam">(b) Let  <math style="vertical-align: -5px">\vec{u}=7\vec{e_1}-4\vec{e_2}.</math>  Find  <math style="vertical-align: -6px">T(\vec{u}).</math>  | ||
| + | |||
| + | <span class="exam">(c) Is  <math style="vertical-align: -21px">\begin{bmatrix}  | ||
| + |            -1 \\  | ||
| + |            3   | ||
| + |          \end{bmatrix}</math>  in the range of  <math style="vertical-align: 0px">T?</math>  Explain.  | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Foundations:      | !Foundations:      | ||
| + | |-  | ||
| + | |'''1.''' The standard matrix of a linear transformation  <math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math>  is given by  | ||
| + | |-  | ||
| + | |  | ||
| + | ::<math>\begin{bmatrix}  | ||
| + |            T(\vec{e_1}) & T(\vec{e_2}) & \cdots & T(\vec{e_n})   | ||
| + |          \end{bmatrix}  | ||
| + | </math>  | ||
| + | |-  | ||
| + | |  | ||
| + | :where  <math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>  is the standard basis of  <math style="vertical-align: -1px">\mathbb{R}^n.</math>  | ||
| + | |-  | ||
| + | |'''2.''' A vector  <math style="vertical-align: 0px">\vec{v}</math>  is in the image of  <math style="vertical-align: 0px">T</math>  if there exists  <math style="vertical-align: 0px">\vec{x}</math>  such that  | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>T(\vec{x})=\vec{v}.</math>  | ||
|}  | |}  | ||
| Line 31: | Line 49: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 1:      | !Step 1:      | ||
| + | |-  | ||
| + | |Notice, we have   | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>T(\vec{e_1})=  | ||
| + |  \begin{bmatrix}  | ||
| + |            5 \\  | ||
| + |            -1  | ||
| + |          \end{bmatrix},~T(\vec{e_2})=  | ||
| + |  \begin{bmatrix}  | ||
| + |            -2.5 \\  | ||
| + |            0.5  | ||
| + |          \end{bmatrix},\text{ and }T(\vec{e_3})=  | ||
| + |  \begin{bmatrix}  | ||
| + |            10 \\  | ||
| + |            -2  | ||
| + |          \end{bmatrix}.</math>  | ||
|}  | |}  | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 2:    | !Step 2:    | ||
| + | |-  | ||
| + | |So, the standard matrix of  <math style="vertical-align: 0px">T</math>  is  | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>[T]=\begin{bmatrix}  | ||
| + |            5 & -2.5 &10 \\  | ||
| + |            -1 & 0.5 & -2  | ||
| + |          \end{bmatrix}.</math>  | ||
|}  | |}  | ||
| Line 45: | Line 84: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 1:      | !Step 1:      | ||
| + | |-  | ||
| + | |Since  <math style="vertical-align: 0px">T</math>  is a linear transformation, we know  | ||
| + | |-  | ||
| + | |  | ||
| + |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{T(\vec{u})} & = & \displaystyle{T(7\vec{e_1}-4\vec{e_2})}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{T(7\vec{e_1})-T(4\vec{e_2})}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{7T(\vec{e_1})-4T(\vec{e_2}).}  | ||
| + | \end{array}</math>  | ||
| + | |}  | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
| + | !Step 2:    | ||
| + | |-  | ||
| + | |Now, we have  | ||
| + | |-  | ||
| + | |  | ||
| + |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{T(\vec{u})} & = & \displaystyle{7\begin{bmatrix}  | ||
| + |            5 \\  | ||
| + |            -1  | ||
| + |          \end{bmatrix}-4\begin{bmatrix}  | ||
| + |            -2.5 \\  | ||
| + |            0.5  | ||
| + |          \end{bmatrix}}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{\begin{bmatrix}  | ||
| + |            35 \\  | ||
| + |            -7  | ||
| + |          \end{bmatrix}+\begin{bmatrix}  | ||
| + |            10 \\  | ||
| + |            -2  | ||
| + |          \end{bmatrix}}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{\begin{bmatrix}  | ||
| + |            45 \\  | ||
| + |            -9  | ||
| + |          \end{bmatrix}.}  | ||
| + | \end{array}</math>  | ||
| + | |}  | ||
| + | |||
| + | '''(c)'''  | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
| + | !Step 1:     | ||
| + | |-  | ||
| + | |To answer this question, we augment the standard matrix of  <math style="vertical-align: -1px">T</math>  with this vector and row reduce this matrix.  | ||
| + | |-  | ||
| + | |So, we have the matrix  | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>\left[\begin{array}{ccc|c}     | ||
| + |            5 & -2.5 & 10 & -1\\  | ||
| + |            -1 & 0.5  & -2  & 3  | ||
| + |          \end{array}\right].</math>  | ||
|}  | |}  | ||
| Line 53: | Line 147: | ||
|-  | |-  | ||
|  | |  | ||
| + | Now, row reducing this matrix, we have  | ||
| + | |-  | ||
| + | |  | ||
| + |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{\left[\begin{array}{ccc|c}     | ||
| + |             5 & -2.5 & 10 & -1\\  | ||
| + |            -1 & 0.5  & -2  & 3  | ||
| + |          \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|c}     | ||
| + |           5 & -2.5 & 10 & -1\\  | ||
| + |            -5 & 2.5  & -10  & 15  | ||
| + |          \end{array}\right]}\\  | ||
| + | &&\\  | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|c}     | ||
| + |            5 & -2.5 & 10 & -1\\  | ||
| + |            0 & 0  & 0  & 14  | ||
| + |          \end{array}\right].}  | ||
| + | \end{array}</math>  | ||
| + | |-  | ||
| + | |From here, we can tell that the corresponding system is inconsistent.   | ||
| + | |-  | ||
| + | |Hence, this vector is not in the range of  <math style="vertical-align: 0px">T.</math>   | ||
|}  | |}  | ||
| Line 59: | Line 174: | ||
!Final Answer:      | !Final Answer:      | ||
|-  | |-  | ||
| − | |   '''(a)'''        | + | |   '''(a)'''     <math>[T]=\begin{bmatrix}  | 
| + |            5 & -2.5 &10 \\  | ||
| + |            -1 & 0.5 & -2  | ||
| + |          \end{bmatrix}</math>  | ||
| + | |-  | ||
| + | |   '''(b)'''     <math>\begin{bmatrix}  | ||
| + |            45 \\  | ||
| + |            -9  | ||
| + |          \end{bmatrix}</math>  | ||
|-  | |-  | ||
| − | |   '''(  | + | |   '''(c)'''     No, see above   | 
|}  | |}  | ||
| − | [[031_Review_Part_2|'''<u>Return to   | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]  | 
Latest revision as of 12:27, 15 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
| Foundations: | 
|---|
| 1. The standard matrix of a linear transformation is given by | 
| 
 | 
  | 
| 2. A vector is in the image of if there exists such that | 
| 
 | 
Solution:
(a)
| Step 1: | 
|---|
| Notice, we have | 
| 
 | 
| Step 2: | 
|---|
| So, the standard matrix of is | 
| 
 | 
(b)
| Step 1: | 
|---|
| Since is a linear transformation, we know | 
| 
 
  | 
| Step 2: | 
|---|
| Now, we have | 
| 
 
  | 
(c)
| Step 1: | 
|---|
| To answer this question, we augment the standard matrix of with this vector and row reduce this matrix. | 
| So, we have the matrix | 
| 
 | 
| Step 2: | 
|---|
| 
 Now, row reducing this matrix, we have  | 
| 
 
  | 
| From here, we can tell that the corresponding system is inconsistent. | 
| Hence, this vector is not in the range of | 
| Final Answer: | 
|---|
| (a) | 
| (b) | 
| (c) No, see above |