Difference between revisions of "031 Review Part 2, Problem 11"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=   
+
<span class="exam">Consider the following system of equations.
    \begin{bmatrix}
 
          1 & -4 & 9 & -7 \\
 
          -1 & 2  & -4 & 1 \\
 
          5 & -6 & 10 & 7
 
        \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
 
  
::<math>B=  
+
::<math>x_1+kx_2=1</math>
    \begin{bmatrix}
 
          1 & 0 & -1 & 5 \\
 
          0 & -2  & 5 & -6 \\
 
          0 & 0 & 0 & 0
 
        \end{bmatrix}.</math>     
 
   
 
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
 
  
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
+
::<math>3x_1+5x_2=2k</math>
  
 +
<span class="exam">Find all real values of &nbsp;<math style="vertical-align: 0px">k</math>&nbsp; such that the system has only one solution.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 +
|-
 +
|'''1.''' To solve a system of equations, we turn the system into an augmented matrix and
 
|-
 
|-
 
|
 
|
 +
::row reduce that matrix to determine the solution.
 +
|-
 +
|'''2.''' For a system to have a unique solution, we need to have no free variables.
 
|}
 
|}
  
Line 29: Line 23:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|To begin with, we turn this system into an augmented matrix.
 +
|-
 +
|Hence, we get
 
|-
 
|-
 
|
 
|
 +
::<math>\left[\begin{array}{cc|c} 
 +
          1 & k & 1 \\
 +
          3 & 5  & 2k 
 +
        \end{array}\right].</math>
 +
|-
 +
|Now, when we row reduce this matrix, we get
 +
|-
 +
|
 +
::<math>\left[\begin{array}{cc|c} 
 +
          1 & k & 1 \\
 +
          3 & 5  & 2k 
 +
        \end{array}\right] \sim \left[\begin{array}{cc|c} 
 +
          1 & k & 1 \\
 +
          0 & -3k+5  & -3+2k 
 +
        \end{array}\right].</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|To guarantee a unique solution, our matrix must contain two pivots.
 +
|-
 +
|So, we must have &nbsp;<math style="vertical-align: -5px">-3k+5\ne 0.</math>
 +
|-
 +
|Hence, we must have
 
|-
 
|-
 
|
 
|
 +
::<math>k\ne \frac {5}{3}.</math>
 +
|-
 +
|Therefore, &nbsp;<math style="vertical-align: 0px">k</math>&nbsp; can be any real number except &nbsp;<math style="vertical-align: -13px">\frac{5}{3}.</math>
 
|}
 
|}
  
Line 43: Line 65:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; The system has only one solution when &nbsp;<math style="vertical-align: 0px">k</math>&nbsp; is any real number except &nbsp;<math style="vertical-align: -13px">\frac{5}{3}.</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:43, 15 October 2017

Consider the following system of equations.

Find all real values of    such that the system has only one solution.

Foundations:  
1. To solve a system of equations, we turn the system into an augmented matrix and
row reduce that matrix to determine the solution.
2. For a system to have a unique solution, we need to have no free variables.


Solution:

Step 1:  
To begin with, we turn this system into an augmented matrix.
Hence, we get
Now, when we row reduce this matrix, we get
Step 2:  
To guarantee a unique solution, our matrix must contain two pivots.
So, we must have  
Hence, we must have
Therefore,    can be any real number except  


Final Answer:  
       The system has only one solution when    is any real number except  

Return to Review Problems