Difference between revisions of "031 Review Part 2, Problem 2"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs)  (Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A=         \begin{bmatrix}            1 & -4 & 9 & -7 \\            -1 & 2  & -4 & 1 \\...") | Kayla Murray (talk | contribs)  | ||
| (3 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam"> Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent? | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| + | ::<math>\begin{bmatrix} | ||
| + |            1  \\ | ||
| + |            0 \\ | ||
| + |            2 | ||
| + |          \end{bmatrix}, | ||
| + |          \begin{bmatrix} | ||
| + |            3  \\ | ||
| + |            1 \\ | ||
| + |            1 | ||
| + |          \end{bmatrix}, | ||
| + |          \begin{bmatrix} | ||
| + |            -2  \\ | ||
| + |            -1 \\ | ||
| + |            1 | ||
| + |          \end{bmatrix}, | ||
| + |          \begin{bmatrix} | ||
| + |            5  \\ | ||
| + |            2 \\ | ||
| + |            2 | ||
| + |          \end{bmatrix}</math> | ||
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| !Foundations:     | !Foundations:     | ||
| + | |- | ||
| + | |'''1.'''  <math style="vertical-align: -1px">\text{dim Col }A</math>  is the number of pivots in  <math style="vertical-align: 0px">A.</math> | ||
| + | |- | ||
| + | |'''2.''' A set of vectors  <math style="vertical-align: -4px">\{\vec{v_1},\vec{v_2},\ldots,\vec{v_n}\}</math>  is linearly independent if  | ||
| |- | |- | ||
| | | | | ||
| + | ::the only solution to  <math style="vertical-align: -4px">x_1\vec{v_1}+x_2\vec{v_2}+\cdots+x_n\vec{v_n}=\vec{0}</math>  is the trivial solution. | ||
| |} | |} | ||
| Line 29: | Line 38: | ||
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| !Step 1:     | !Step 1:     | ||
| + | |- | ||
| + | |We begin by putting these vectors together in a matrix. So, we have | ||
| + | |- | ||
| + | | | ||
| + | ::<math>     | ||
| + |     \begin{bmatrix} | ||
| + |            1 & 3 & -2 & 5 \\ | ||
| + |            0 & 1  & -1 & 2 \\ | ||
| + |            2 & 1 & 1 & 2  | ||
| + |          \end{bmatrix}.</math>  | ||
| + | |- | ||
| + | |Now, we row reduce this matrix. We get | ||
| |- | |- | ||
| | | | | ||
| + |        <math>\begin{array}{rcl} | ||
| + | \displaystyle{\left[\begin{array}{cccc}    | ||
| + |            1 & 3 & -2 & 5 \\ | ||
| + |            0 & 1  & -1 & 2 \\ | ||
| + |            2 & 1 & 1 & 2  | ||
| + |          \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{cccc}    | ||
| + |            1 & 3 & -2 & 5 \\ | ||
| + |            0 & 1  & -1 & 2 \\ | ||
| + |            0 & -5 & 5 & -8  | ||
| + |          \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{cccc}    | ||
| + |            1 & 3 & -2 & 5 \\ | ||
| + |            0 & 1  & -1 & 2 \\ | ||
| + |            0 & 0 & 0 & 2  | ||
| + |          \end{array}\right]} | ||
| + | \end{array}</math> | ||
| |} | |} | ||
| Line 36: | Line 74: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | | | + | |Now, we have 3 pivots in this matrix. So, the dimension of the column space of the matrix we started with is 3.  | 
| + | |- | ||
| + | |Hence, the dimension of the subspace spanned by these vectors is  <math style="vertical-align: 0px">3.</math> | ||
| + | |- | ||
| + | |When we row reduced the matrix, we had a column that did not contain a pivot.  | ||
| + | |- | ||
| + | |This means we have a free variable in the system corresponding to  <math style="vertical-align: 0px">Ax=0.</math>   | ||
| + | |- | ||
| + | |So, these vectors are not linearly independent. | ||
| |} | |} | ||
| Line 43: | Line 89: | ||
| !Final Answer:     | !Final Answer:     | ||
| |- | |- | ||
| − | |          | + | |        The dimension is  <math style="vertical-align: 0px">3</math>  and the vectors are not linearly independent. | 
| |} | |} | ||
| − | [[031_Review_Part_2|'''<u>Return to  | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] | 
Latest revision as of 13:13, 15 October 2017
Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
| Foundations: | 
|---|
| 1. is the number of pivots in | 
| 2. A set of vectors is linearly independent if | 
| 
 | 
Solution:
| Step 1: | 
|---|
| We begin by putting these vectors together in a matrix. So, we have | 
|  | 
| Now, we row reduce this matrix. We get | 
| 
 | 
| Step 2: | 
|---|
| Now, we have 3 pivots in this matrix. So, the dimension of the column space of the matrix we started with is 3. | 
| Hence, the dimension of the subspace spanned by these vectors is | 
| When we row reduced the matrix, we had a column that did not contain a pivot. | 
| This means we have a free variable in the system corresponding to | 
| So, these vectors are not linearly independent. | 
| Final Answer: | 
|---|
| The dimension is and the vectors are not linearly independent. |