Difference between revisions of "031 Review Part 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 16: Line 16:
  
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 +
|-
 +
|'''1.''' For a matrix &nbsp;<math style="vertical-align: -4px">A,</math>&nbsp; the rank of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\text{rank }A=\text{dim Col }A.</math>
 +
|-
 +
|'''2.''' &nbsp;<math style="vertical-align: -1px">\text{Col }A</math>&nbsp; is the vector space spanned by the columns of &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|'''3.''' &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is the vector space containing all solutions to &nbsp;<math style="vertical-align: 0px">Ax=0.</math>
 
|}
 
|}
  
Line 31: Line 37:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|From the matrix &nbsp;<math style="vertical-align: -4px">B,</math>&nbsp; we see that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; contains two pivots.
 +
|-
 +
|Therefore,
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{rank }A} & = & \displaystyle{\text{dim Col }A}\\
 +
&&\\
 +
& = & \displaystyle{2.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|By the Rank Theorem, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{4} & = & \displaystyle{\text{rank }A+\text{dim Nul }A}\\
 +
&&\\
 +
& = & \displaystyle{2+\text{dim Nul }A.}
 +
\end{array}</math>
 +
|-
 +
|Hence, &nbsp;<math style="vertical-align: -2px">\text{dim Nul }A=2.</math>
 
|}
 
|}
  
Line 45: Line 69:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|From the matrix &nbsp;<math style="vertical-align: -4px">B,</math>&nbsp; we see that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; contains pivots in Column 1 and 2.
 +
|-
 +
|So, to obtain a basis for &nbsp;<math style="vertical-align: -4px">\text{Col }A,</math>&nbsp; we select the corresponding columns from &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|Hence, a basis for &nbsp;<math style="vertical-align: -1px">\text{Col }A</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          -1 \\
 +
          5
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -4  \\
 +
          2 \\
 +
          -6
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 +
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|To find a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; we translate the matrix equation &nbsp;<math style="vertical-align: -1px">Bx=0</math>&nbsp; back into a system of equations
 +
|-
 +
|and solve for the pivot variables.
 +
|-
 +
|Hence, we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{x_1-x_3+5x_4} & = & \displaystyle{0}\\
 +
&&\\
 +
\displaystyle{-2x_2+5x_3-6x_4} & = & \displaystyle{0.}
 +
\end{array}</math>
 +
|-
 +
|Solving for the pivot variables, we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{x_1} & = & \displaystyle{x_3-5x_4}\\
 +
&&\\
 +
\displaystyle{x_2} & = & \displaystyle{\frac{5}{2}x_3-3x_4.}
 +
\end{array}</math>
 +
|-
 +
|Hence, the solutions to &nbsp;<math style="vertical-align: -1px">Ax=0</math>&nbsp; are of the form
 +
|-
 +
|
 +
::<math>x_3\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix}+x_4\begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}.</math>
 +
|-
 +
|Therefore, a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 
|}
 
|}
  
Line 59: Line 153:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -2px">\text{rank }A=2</math>&nbsp; and &nbsp;<math style="vertical-align: -2px">\text{dim Nul }A=2</math>
 +
|-
 +
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; A basis for &nbsp;<math style="vertical-align: -1px">\text{Col }A</math>&nbsp; is &nbsp;<math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          -1 \\
 +
          5
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -4  \\
 +
          2 \\
 +
          -6
 +
        \end{bmatrix}\Bigg\}
 +
        </math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp; &nbsp; &nbsp; &nbsp; and a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is &nbsp;<math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:12, 15 October 2017

Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  

Foundations:  
1. For a matrix    the rank of    is
2.    is the vector space spanned by the columns of  
3.    is the vector space containing all solutions to  


Solution:

(a)

Step 1:  
From the matrix    we see that    contains two pivots.
Therefore,

       

Step 2:  
By the Rank Theorem, we have

       

Hence,  

(b)

Step 1:  
From the matrix    we see that    contains pivots in Column 1 and 2.
So, to obtain a basis for    we select the corresponding columns from  
Hence, a basis for    is
Step 2:  
To find a basis for    we translate the matrix equation    back into a system of equations
and solve for the pivot variables.
Hence, we have

       

Solving for the pivot variables, we have

       

Hence, the solutions to    are of the form
Therefore, a basis for    is


Final Answer:  
   (a)       and  
   (b)     A basis for    is  
        and a basis for    is  

Return to Review Problems