Difference between revisions of "031 Review Part 1, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">True or false: If all the entries of a <math style="vertical-align: 0px">7\times 7</math> matrix <math style="vertical-align: 0px">A</math...") |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam">True or false: If | + | <span class="exam">True or false: If <math style="vertical-align: 0px">A</math> is an invertible <math style="vertical-align: 0px">3\times 3</math> matrix, and <math style="vertical-align: 0px">B</math> and <math style="vertical-align: 0px">C</math> are <math style="vertical-align: 0px">3\times 3</math> matrices such that <math style="vertical-align: -4px">AB=AC,</math> |
+ | |||
+ | <span class="exam">then <math style="vertical-align: 0px">B=C.</math> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | |Since <math style="vertical-align: 0px">A</math> is invertible, <math style="vertical-align: 0px">A^{-1}</math> exists. |
+ | |- | ||
+ | |Since <math style="vertical-align: -4px">AB=AC,</math> we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>A^{-1}(AB)=A^{-1}(AC).</math> | ||
|- | |- | ||
− | | | + | |Then, by associativity of matrix multiplication, we have |
|- | |- | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{(A^{-1}A)B} & = & \displaystyle{(A^{-1}A)C}\\ |
&&\\ | &&\\ | ||
− | + | \displaystyle{I_3 B} & = & \displaystyle{I_3 C}\\ | |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | \displaystyle{B} & = & \displaystyle{C} |
\end{array}</math> | \end{array}</math> | ||
+ | |- | ||
+ | |where <math style="vertical-align: -3px">I_3</math> is the <math style="vertical-align: -1px">3\times 3</math> identity matrix. | ||
+ | |- | ||
+ | |Hence, the statement is true. | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | TRUE |
|} | |} | ||
− | [[031_Review_Part_1|'''<u>Return to | + | [[031_Review_Part_1|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 12:22, 15 October 2017
True or false: If is an invertible matrix, and and are matrices such that
then
Solution: |
---|
Since is invertible, exists. |
Since we have |
|
Then, by associativity of matrix multiplication, we have |
|
where is the identity matrix. |
Hence, the statement is true. |
Final Answer: |
---|
TRUE |