Difference between revisions of "031 Review Part 1, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">True or false: If all the entries of a <math style="vertical-align: 0px">7\times 7</math> matrix <math style="vertical-align: 0px">A</math...") |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam">True or false: | + | <span class="exam">True or false: Let <math style="vertical-align: 0px">W</math> be a subspace of <math style="vertical-align: 0px">\mathbb{R}^4</math> and <math style="vertical-align: 0px">\vec{v}</math> be a vector in <math style="vertical-align: 0px">\mathbb{R}^4.</math> If <math style="vertical-align: 0px">\vec{v}\in W</math> and <math style="vertical-align: -4px">\vec{v}\in W^\perp,</math> then <math style="vertical-align: 0px">\vec{v}=\vec{0}.</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | |Since <math style="vertical-align: -4px">\vec{v}\in W^\perp,</math> we know <math style="vertical-align: 0px">\vec{v}</math> is orthogonal to every vector in <math style="vertical-align: 0px">W.</math> |
|- | |- | ||
− | | | + | |In particular, since <math style="vertical-align: -4px">\vec{v}\in W,</math> we have that <math style="vertical-align: 0px">\vec{v}</math> is orthogonal to <math style="vertical-align: 0px">\vec{v}.</math> |
+ | |- | ||
+ | |Hence, | ||
|- | |- | ||
| | | | ||
− | + | ::<math>\vec{v}\cdot \vec{v}=0.</math> | |
− | + | |- | |
− | & | + | |But, this tells us that <math style="vertical-align: 0px">\vec{v}=\vec{0}.</math> |
− | + | |- | |
− | + | |Therefore, the statement is true. | |
− | |||
− | |||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | TRUE |
|} | |} | ||
− | [[031_Review_Part_1|'''<u>Return to | + | [[031_Review_Part_1|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 12:21, 15 October 2017
True or false: Let be a subspace of and be a vector in If and then
Solution: |
---|
Since we know is orthogonal to every vector in |
In particular, since we have that is orthogonal to |
Hence, |
|
But, this tells us that |
Therefore, the statement is true. |
Final Answer: |
---|
TRUE |