Difference between revisions of "031 Review Part 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">True or false: If all the entries of a <math style="vertical-align: 0px">7\times 7</math> matrix <math style="vertical-align: 0px">A</math...") |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam">True or false: If | + | <span class="exam"> True or false: If <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">3\times 5</math> matrix and <math style="vertical-align: -4px">\text{dim Nul }A=2,</math> then <math style="vertical-align: 0px">A\vec{x}=\vec{b}</math> is consistent for all <math style="vertical-align: 0px">\vec{b}</math> in <math style="vertical-align: 0px">\mathbb{R}^3.</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | |By the Rank Theorem, we have |
− | |||
− | |||
|- | |- | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{5} & = & \displaystyle{\text{dim Col }A+\text{dim Nul }A}\\ |
&&\\ | &&\\ | ||
− | & | + | & = & \displaystyle{\text{dim Col }A+2.} |
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
+ | |- | ||
+ | |Hence, <math style="vertical-align: -2px">\text{dim Col }A=3.</math> | ||
+ | |- | ||
+ | |This tells us that <math style="vertical-align: 0px">A</math> has three pivots. | ||
+ | |- | ||
+ | |Since <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">3\times 5</math> matrix, | ||
+ | |- | ||
+ | | <math style="vertical-align: 0px">A</math> has a pivot in every row. | ||
+ | |- | ||
+ | |Therefore, <math style="vertical-align: 0px">A\vec{x}=\vec{b}</math> is consistent for all <math style="vertical-align: 0px">\vec{b}</math> in <math style="vertical-align: 0px">\mathbb{R}^3.</math> | ||
+ | |- | ||
+ | |So, the statement is true. | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | TRUE |
|} | |} | ||
− | [[031_Review_Part_1|'''<u>Return to | + | [[031_Review_Part_1|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 12:19, 15 October 2017
True or false: If is a matrix and then is consistent for all in
Solution: |
---|
By the Rank Theorem, we have |
|
Hence, |
This tells us that has three pivots. |
Since is a matrix, |
has a pivot in every row. |
Therefore, is consistent for all in |
So, the statement is true. |
Final Answer: |
---|
TRUE |