Difference between revisions of "031 Review Part 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">True or false: If all the entries of a <math style="vertical-align: 0px">7\times 7</math> matrix <math style="vertical-align: 0px">A</math...") |
Kayla Murray (talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | |If all the entries of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">7,</math> then all the rows of <math style="vertical-align: 0px">A</math> are identical. |
|- | |- | ||
− | |So, | + | |So, when you row reduce <math style="vertical-align: -4px">A,</math> it is row equivalent to a matrix <math style="vertical-align: -4px">B,</math> where <math style="vertical-align: 0px">B</math> contains a row of zeros. |
+ | |- | ||
+ | |Then, | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\text{det } B=0.</math> | ||
+ | |- | ||
+ | |But, <math style="vertical-align: -1px">\text{det }A</math> is a scalar multiple of <math style="vertical-align: -1px">\text{det }B.</math> | ||
+ | |- | ||
+ | |So, | ||
|- | |- | ||
| | | | ||
− | + | ::<math>\text{det }A=0</math> | |
− | + | |- | |
− | + | |and the statement is false. | |
− | + | |- | |
− | |||
− | |||
− | |||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | FALSE |
|} | |} | ||
− | [[031_Review_Part_1|'''<u>Return to | + | [[031_Review_Part_1|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 12:00, 15 October 2017
True or false: If all the entries of a matrix are then must be
Solution: |
---|
If all the entries of are then all the rows of are identical. |
So, when you row reduce it is row equivalent to a matrix where contains a row of zeros. |
Then, |
|
But, is a scalar multiple of |
So, |
|
and the statement is false. |
Final Answer: |
---|
FALSE |