Difference between revisions of "031 Review Part 3"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.''' '''Click on the <span class...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.'''
+
'''These questions are from sample exams and actual exams at other universities. The questions are meant to represent the material usually covered in Math 31 for the final. An actual test may or may not be similar.'''
  
 
'''Click on the <span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 
'''Click on the <span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[009C_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]]==  
+
== [[031_Review Part 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]]==  
  
 
<span class="exam">(a) Is the matrix &nbsp;<math style="vertical-align: -18px">A=     
 
<span class="exam">(a) Is the matrix &nbsp;<math style="vertical-align: -18px">A=     
Line 19: Line 19:
 
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
 
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
  
 
+
== [[031_Review Part 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
 
== [[009C_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
 
<span class="exam"> Find the eigenvalues and eigenvectors of the matrix &nbsp;<math style="vertical-align: -31px">A=     
 
<span class="exam"> Find the eigenvalues and eigenvectors of the matrix &nbsp;<math style="vertical-align: -31px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
Line 29: Line 27:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
  
 
+
== [[031_Review Part 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
== [[009C_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
 
<span class="exam">Let &nbsp;<math style="vertical-align: -20px">A=     
 
<span class="exam">Let &nbsp;<math style="vertical-align: -20px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
Line 41: Line 38:
 
<span class="exam">(b) Is the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; diagonalizable? Explain.
 
<span class="exam">(b) Is the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; diagonalizable? Explain.
  
== [[009C_Sample Final 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[031_Review Part 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
<span class="exam"> Let &nbsp;<math>W=\text{Span }\Bigg\{\begin{bmatrix}
 
<span class="exam"> Let &nbsp;<math>W=\text{Span }\Bigg\{\begin{bmatrix}
 
           2 \\
 
           2 \\
Line 59: Line 56:
 
         \end{bmatrix}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">W^\perp?</math>&nbsp; Explain.
 
         \end{bmatrix}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">W^\perp?</math>&nbsp; Explain.
  
 
+
== [[031_Review Part 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
== [[009C_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
 
<span class="exam">Find a formula for &nbsp;<math>\begin{bmatrix}
 
<span class="exam">Find a formula for &nbsp;<math>\begin{bmatrix}
 
           1 & -6  \\
 
           1 & -6  \\
Line 66: Line 62:
 
         \end{bmatrix}^k</math>&nbsp; by diagonalizing the matrix.
 
         \end{bmatrix}^k</math>&nbsp; by diagonalizing the matrix.
  
== [[009C_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
+
== [[031_Review Part 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
<span class="exam"> (a) Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 2, then &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: -2px">A^3-A^2+I.</math>&nbsp; What is the corresponding eigenvalue?
 
<span class="exam"> (a) Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 2, then &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: -2px">A^3-A^2+I.</math>&nbsp; What is the corresponding eigenvalue?
  
 
<span class="exam">(b) Show that if &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 3 and &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}.</math>&nbsp; What is the corresponding eigenvalue?
 
<span class="exam">(b) Show that if &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 3 and &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}.</math>&nbsp; What is the corresponding eigenvalue?
  
== [[009C_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
+
== [[031_Review Part 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
 
<span class="exam">Let &nbsp;<math>A=\begin{bmatrix}
 
<span class="exam">Let &nbsp;<math>A=\begin{bmatrix}
Line 89: Line 85:
 
<span class="exam">Use the Diagonalization Theorem to find the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and a basis for each eigenspace.
 
<span class="exam">Use the Diagonalization Theorem to find the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and a basis for each eigenspace.
  
== [[009C_Sample Final 1,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
+
== [[031_Review Part 3,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
 
<span class="exam">Give an example of a &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; with eigenvalues 5,-1 and 3.
 
<span class="exam">Give an example of a &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; with eigenvalues 5,-1 and 3.
  
== [[009C_Sample Final 1,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
+
== [[031_Review Part 3,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
  
 
<span class="exam">Assume &nbsp;<math style="vertical-align: 0px">A^2=I.</math>&nbsp; Find &nbsp;<math style="vertical-align: -1px">\text{Nul }A.</math>
 
<span class="exam">Assume &nbsp;<math style="vertical-align: 0px">A^2=I.</math>&nbsp; Find &nbsp;<math style="vertical-align: -1px">\text{Nul }A.</math>
  
 
+
== [[031_Review Part 3,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
== [[009C_Sample Final 1,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 
  
 
<span class="exam">Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix product &nbsp;<math style="vertical-align: 0px">AB</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">BA.</math>
 
<span class="exam">Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix product &nbsp;<math style="vertical-align: 0px">AB</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">BA.</math>
  
== [[009C_Sample Final 1,_Problem_11|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 11&nbsp;</span>]] ==
+
== [[031_Review Part 3,_Problem_11|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 11&nbsp;</span>]] ==
  
 
<span class="exam">Suppose &nbsp;<math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math>&nbsp; is a basis of the eigenspace corresponding to the eigenvalue 0 of a &nbsp;<math style="vertical-align: 0px">5\times 5</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A.</math>
 
<span class="exam">Suppose &nbsp;<math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math>&nbsp; is a basis of the eigenspace corresponding to the eigenvalue 0 of a &nbsp;<math style="vertical-align: 0px">5\times 5</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A.</math>

Latest revision as of 19:34, 9 October 2017

These questions are from sample exams and actual exams at other universities. The questions are meant to represent the material usually covered in Math 31 for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

 Problem 2 

Find the eigenvalues and eigenvectors of the matrix  

 Problem 3 

Let  

(a) Find a basis for the eigenspace(s) of  

(b) Is the matrix    diagonalizable? Explain.

 Problem 4 

Let    Is    in    Explain.

 Problem 5 

Find a formula for    by diagonalizing the matrix.

 Problem 6 

(a) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 2, then    is an eigenvector of    What is the corresponding eigenvalue?

(b) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 3 and    is invertible, then    is an eigenvector of    What is the corresponding eigenvalue?

 Problem 7 

Let  

Use the Diagonalization Theorem to find the eigenvalues of    and a basis for each eigenspace.

 Problem 8 

Give an example of a    matrix    with eigenvalues 5,-1 and 3.

 Problem 9 

Assume    Find  

 Problem 10 

Show that if    is an eigenvector of the matrix product    and    then    is an eigenvector of  

 Problem 11 

Suppose    is a basis of the eigenspace corresponding to the eigenvalue 0 of a    matrix  

(a) Is    an eigenvector of    If so, find the corresponding eigenvalue.

If not, explain why.

(b) Find the dimension of