Difference between revisions of "Product Rule and Quotient Rule"

From Grad Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by one other user not shown)
Line 10: Line 10:
 
Or what about &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; when &nbsp;<math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math>
 
Or what about &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; when &nbsp;<math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math>
  
Notice &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is a product and &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
+
Notice &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is a product, and &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
  
 
'''Product Rule'''
 
'''Product Rule'''
Line 164: Line 164:
 
== Exercise 1 ==
 
== Exercise 1 ==
  
Calculate the derivative of &nbsp;<math style="vertical-align: -16px">f(x)=\frac{1}{x^2}(\csc x-4).</math>
+
Calculate the derivative of &nbsp;<math style="vertical-align: -13px">f(x)=\frac{1}{x^2}(\csc x-4).</math>
  
First, we factor out &nbsp;<math style="vertical-align: -1px">4</math>&nbsp; out of the denominator.
+
First, we need to know the derivative of &nbsp;<math style="vertical-align: 0px">\csc x.</math>&nbsp; Recall
  
So, we have
+
::<math>\csc x =\frac{1}{\sin x}.</math>
 +
 
 +
Now, using the Quotient Rule, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{4}\int \frac{2}{\frac{y^2}{4}+1}~dy}\\
+
\displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{2}\int \frac{1}{(\frac{y}{2})^2+1}~dy.}\\
+
& = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\
 +
&&\\
 +
& = & \displaystyle{-\csc x \cot x.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we use &nbsp;<math style="vertical-align: -1px">u</math>-substitution. Let &nbsp;<math>u=\frac{y}{2}.</math>
+
Using the Product Rule and Power Rule, we have
 
 
Then, &nbsp;<math style="vertical-align: -14px">du=\frac{1}{2}~dy</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">2~du=dy.</math>
 
 
 
Plugging these into our integral, we get
 
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{2}\int \frac{2}{u^2+1}~du}\\
+
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\
&&\\
 
& = & \displaystyle{\int \frac{1}{u^2+1}~du}\\
 
 
&&\\
 
&&\\
& = & \displaystyle{\arctan(u)+C}\\
+
& = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\arctan\bigg(\frac{y}{2}\bigg)+C.}\\
+
& = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>\int \frac{2}{y^2+4}~dy=\arctan\bigg(\frac{y}{2}\bigg)+C.</math>
+
::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math>
  
 
== Exercise 2 ==
 
== Exercise 2 ==
  
Calculate the derivative of &nbsp;<math style="vertical-align: -17px">g(x)=2x\sin x \sec x.</math>
+
Calculate the derivative of &nbsp;<math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math>
 +
 
 +
Notice that the function &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is the product of three functions.
  
Let &nbsp;<math style="vertical-align: -5px">u=5+\sin(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">u=\cos(x)~dx.</math>
+
We start by grouping two of the functions together. So, we have &nbsp;<math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math>
  
Plugging these into our integral, we get
+
Using the Product Rule, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{\cos(x)}{(5+\sin x)^2}~dx} & = & \displaystyle{\int \frac{1}{u^2}~du}\\
+
\displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\
 
&&\\
 
&&\\
& = & \displaystyle{-\frac{1}{u}+C}\\
+
& = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.}
 +
\end{array}</math>
 +
 
 +
Now, we need to use the Product Rule again. So,
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\
 
&&\\
 
&&\\
& = & \displaystyle{-\frac{1}{5+\sin(x)}+C.}
+
& = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>\int \frac{\cos(x)}{(5+\sin x)^2}~dx=-\frac{1}{5+\sin(x)}+C.</math>
+
::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math>
 +
 
 +
But, there is another way to do this problem. Notice
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\
 +
&&\\
 +
& = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\
 +
&&\\
 +
& = & \displaystyle{2x\tan x.}
 +
\end{array}</math>
 +
 
 +
Now, you would only need to use the Product Rule once instead of twice.
  
 
== Exercise 3 ==
 
== Exercise 3 ==
Line 218: Line 240:
 
Calculate the derivative of &nbsp;<math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math>
 
Calculate the derivative of &nbsp;<math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math>
  
Here, the substitution is not obvious.
+
Using the Quotient Rule, we have
  
Let &nbsp;<math style="vertical-align: -3px">u=2x+3.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=2~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
+
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math>
  
Now, we need a way of getting rid of &nbsp;<math style="vertical-align: -2px">x+5</math>&nbsp; in the numerator.  
+
Now, we need to use the Product Rule. So, we have
 
 
Solving for &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in the first equation, we get &nbsp;<math style="vertical-align: -14px">x=\frac{1}{2}u-\frac{3}{2}.</math>
 
 
 
Plugging these into our integral, we get
 
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{x+5}{2x+3}~dx} & = & \displaystyle{\int \frac{(\frac{1}{2}u-\frac{3}{2})+5}{2u}~du}\\
+
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{2}\int \frac{\frac{1}{2}u+\frac{7}{2}}{u}~du}\\
+
& = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}
&&\\
 
& = & \displaystyle{\frac{1}{4}\int \frac{u+7}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}\int 1+\frac{7}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}(u+7\ln|u|)+C}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}(2x+3+7\ln|2x+3|)+C.}\\
 
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we get
 
So, we get
::<math>\int \frac{x+5}{2x+3}~dx=\frac{1}{4}(2x+3+7\ln|2x+3|)+C.</math>
+
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math>
  
 
== Exercise 4 ==
 
== Exercise 4 ==
  
Evaluate the indefinite integral &nbsp;<math style="vertical-align: -14px">\int \frac{x^2+4}{x+2}~dx.</math>
+
Calculate the derivative of  &nbsp;<math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math>
  
Let &nbsp;<math style="vertical-align: -2px">u=x+2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=dx.</math>
+
First, using the Quotient Rule, we have
  
Now, we need a way of replacing &nbsp;<math style="vertical-align: -2px">x^2+4.</math>  
+
::<math>\begin{array}{rcl}
 
+
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
If we solve for &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in our first equation, we get &nbsp;<math style="vertical-align: -1px">x=u-2.</math>
+
&&\\
 
+
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
Now, we square both sides of this last equation to get &nbsp;<math style="vertical-align: -5px">x^2=(u-2)^2.</math>
+
\end{array}</math>
  
Plugging in to our integral, we get
+
Now, we need to use the Product Rule. So, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\int \frac{x^2+4}{x+2}~dx} & = & \displaystyle{\int \frac{(u-2)^2+4}{u}~du}\\
+
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
&&\\
 
& = & \displaystyle{\int \frac{u^2-4u+4+4}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\int \frac{u^2-4u+8}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\int u-4+\frac{8}{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{u^2}{2}-4u+8\ln|u|+C}\\
 
 
&&\\
 
&&\\
& = & \displaystyle{\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.}\\
+
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>\int \frac{x^2+4}{x+2}~dx=\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.</math>
+
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>

Latest revision as of 22:46, 4 October 2017

Introduction

Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.

For example, if    then  

But, what about more complicated functions?

For example, what is    when  

Or what about    when  

Notice    is a product, and    is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.

Product Rule

Let    Then,

Quotient Rule

Let    Then,

Warm-Up

Calculate  

1)  

Solution:  
Using the Product Rule, we have
Then, using the Power Rule, we have
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function.
You can distribute the terms and then use the Power Rule.
In this case, we have
Now, using the Power Rule, we get
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
Final Answer:  
       
or equivalently
       

2)  

Solution:  

Using the Quotient Rule, we have

Then, using the Power Rule, we have
NOTE: It is not necessary to use the Quotient Rule to calculate the derivative of this function.
You can divide and then use the Power Rule.
In this case, we have
Now, using the Power Rule, we get
Final Answer:  
       
or equivalently
       

3)  

Solution:  
Using the Quotient Rule, we get
since    and  
Since    we have
Final Answer:  
       

Exercise 1

Calculate the derivative of  

First, we need to know the derivative of    Recall

Now, using the Quotient Rule, we have

Using the Product Rule and Power Rule, we have

So, we have

Exercise 2

Calculate the derivative of  

Notice that the function    is the product of three functions.

We start by grouping two of the functions together. So, we have  

Using the Product Rule, we get

Now, we need to use the Product Rule again. So,

So, we have

But, there is another way to do this problem. Notice

Now, you would only need to use the Product Rule once instead of twice.

Exercise 3

Calculate the derivative of  

Using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we get

Exercise 4

Calculate the derivative of  

First, using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we have