|   |     | 
| (14 intermediate revisions by one other user not shown) | 
| Line 10: | Line 10: | 
|  | Or what about  <math style="vertical-align: -5px">g'(x)</math>  when  <math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math> |  | Or what about  <math style="vertical-align: -5px">g'(x)</math>  when  <math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math> | 
|  |  |  |  | 
| − | Notice  <math style="vertical-align: -5px">f(x)</math>  is a product and  <math style="vertical-align: -5px">g(x)</math>  is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives. | + | Notice  <math style="vertical-align: -5px">f(x)</math>  is a product, and  <math style="vertical-align: -5px">g(x)</math>  is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives. | 
|  |  |  |  | 
|  | '''Product Rule''' |  | '''Product Rule''' | 
| Line 43: | Line 43: | 
|  | |- |  | |- | 
|  | |- |  | |- | 
| − | |<u>NOTE:</u> You don't have to use the Product Rule to calculate the derivative of this function. | + | |<u>NOTE:</u> It is not necessary to use the Product Rule to calculate the derivative of this function.   | 
|  | |- |  | |- | 
|  | |You can distribute the terms and then use the Power Rule. |  | |You can distribute the terms and then use the Power Rule. | 
| Line 83: | Line 83: | 
|  | !Solution:   |  | !Solution:   | 
|  | |- |  | |- | 
| − | |Let  <mathstyle="vertical-align: -2px">u=1-2x^2.</math>  Then, <math style="vertical-align:-2px">du=-4x~dx.</math>  Hence,  <math style="vertical-align: -15px">\frac{du}{-4}=x~dx.</math>  | + | | | 
|  | + | Using the Quotient Rule, we have | 
|  | + | |- | 
|  | + | | | 
|  | + | ::<math>f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.</math> | 
|  | + | |- | 
|  | + | |Then, using the Power Rule, we have | 
|  | + | |- | 
|  | + | | | 
|  | + | ::<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.</math> | 
|  | + | |- | 
|  | + | |<u>NOTE:</u> It is not necessary to use the Quotient Rule to calculate the derivative of this function. | 
|  | + | |- | 
|  | + | |You can divide and then use the Power Rule. | 
|  | |- |  | |- | 
| − | |Plugging these into our integral, weget | + | |In this case, we have | 
|  | |- |  | |- | 
|  | | |  | | | 
|  | ::<math>\begin{array}{rcl} |  | ::<math>\begin{array}{rcl} | 
| − | \displaystyle{\int\frac{x}{\sqrt{1-2x^2}}~dx} & = & \displaystyle{\int -\frac{1}{4}~u^{-\frac{1}{2}}~du}\\ | + | \displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{-\frac{1}{2}u^{\frac{1}{2}}+C}\\ | + | & = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{-\frac{1}{2}\sqrt{1-2x^2}+C.} \\ | + | & = & \displaystyle{x+x^2.} \\ | 
|  | \end{array}</math> |  | \end{array}</math> | 
|  | |- |  | |- | 
|  | + | |Now, using the Power Rule, we get | 
|  | + | |- | 
|  | + | | | 
|  | + | ::<math>f'(x)=1+2x.</math> | 
|  | |} |  | |} | 
|  |  |  |  | 
| Line 101: | Line 118: | 
|  | !Final Answer:   |  | !Final Answer:   | 
|  | |- |  | |- | 
| − | |       <math>-\frac{1}{2}\sqrt{1-2x^2}+C</math> | + | ||       <math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}</math> | 
|  | + | |- | 
|  | + | |or equivalently | 
|  | + | |- | 
|  | + | |       <math>f'(x)=1+2x</math> | 
|  | + |   | 
|  | |- |  | |- | 
|  | |} |  | |} | 
| Line 110: | Line 132: | 
|  | !Solution:   |  | !Solution:   | 
|  | |- |  | |- | 
| − | |Let  <math style="vertical-align: -6px">u=\ln(x).</math>  Then,  <math style="vertical-align: -14px">du=\frac{1}{x}~dx.</math> | + | |Using the Quotient Rule, we get | 
| − | |-
 |  | 
| − | |Plugging these into our integral, we get
 |  | 
|  | |- |  | |- | 
|  | | |  | | | 
|  | ::<math>\begin{array}{rcl} |  | ::<math>\begin{array}{rcl} | 
| − | \displaystyle{\int\frac{\sin(\ln x)}{x}~dx} & = & \displaystyle{\int \sin(u)~du}\\ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\ | 
|  | + | &&\\ | 
|  | + | & = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{-\cos(u)+C}\\ | + | & = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{-\cos(\ln x)+C.} \\ | + | & = & \displaystyle{\frac{1}{\cos^2 x}}\\ | 
|  | + | &&\\ | 
|  | + | & = & \displaystyle{\sec^2 x} | 
|  | \end{array}</math> |  | \end{array}</math> | 
|  | |- |  | |- | 
|  | + | |since  <math style="vertical-align: -2px">\sin^2 x+\cos^2 x=1</math>  and  <math style="vertical-align: -13px">\sec x=\frac{1}{\cos x}.</math> | 
|  | + | |- | 
|  | + | |Since  <math style="vertical-align: -14px">\frac{\sin x}{\cos x}=\tan x,</math>  we have  | 
|  | + | |- | 
|  | + | | | 
|  | + | ::<math>\frac{d}{dx}{\tan x}=\sec^2 x.</math> | 
|  | |} |  | |} | 
|  |  |  |  | 
| Line 128: | Line 158: | 
|  | !Final Answer:   |  | !Final Answer:   | 
|  | |- |  | |- | 
| − | |       <math>-\cos(\ln x)+C</math> | + | |       <math>f'(x)=\sec^2 x</math> | 
|  | |- |  | |- | 
|  | |} |  | |} | 
| Line 134: | Line 164: | 
|  | == Exercise 1 == |  | == Exercise 1 == | 
|  |  |  |  | 
| − | Evaluate theindefinite integral  <math style="vertical-align: -16px">\int \frac{2}{y^2+4}~dy.</math>
 | + | Calculate the derivative of  <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}(\csc x-4).</math> | 
|  |  |  |  | 
| − | First, we factor out  <math style="vertical-align:-1px">4</math> out of the denominator. | + | First, we need to know the derivative of  <math style="vertical-align: 0px">\csc x.</math>  Recall | 
|  |  |  |  | 
| − | So, we have
 | + | ::<math>\csc x =\frac{1}{\sin x}.</math> | 
|  | + |   | 
|  | + | Now, using the Quotient Rule, we have | 
|  |  |  |  | 
|  | ::<math>\begin{array}{rcl} |  | ::<math>\begin{array}{rcl} | 
| − | \displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{4}\int \frac{2}{\frac{y^2}{4}+1}~dy}\\ | + | \displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\ | 
|  | + | &&\\ | 
|  | + | & = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\ | 
|  | + | &&\\ | 
|  | + | & = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\ | 
|  | + | &&\\ | 
|  | + | & = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{\frac{1}{2}\int \frac{1}{(\frac{y}{2})^2+1}~dy.}\\ | + | & = & \displaystyle{-\csc x \cot x.} | 
|  | \end{array}</math> |  | \end{array}</math> | 
|  |  |  |  | 
| − | Now, we use  <math style="vertical-align: -1px">u</math>-substitution. Let  <math>u=\frac{y}{2}.</math>
 | + | Using the Product Rule and Power Rule, we have  | 
| − |   |  | 
| − | Then,  <math style="vertical-align: -14px">du=\frac{1}{2}~dy</math>  and <math style="vertical-align: -5px">2~du=dy.</math>
 |  | 
| − |   |  | 
| − | Plugging these into our integral, weget
 |  | 
|  |  |  |  | 
|  | ::<math>\begin{array}{rcl} |  | ::<math>\begin{array}{rcl} | 
| − | \displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{2}\int \frac{2}{u^2+1}~du}\\ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{\int \frac{1}{u^2+1}~du}\\ | + | & = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{\arctan(u)+C}\\ | + | & = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.} | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\arctan\bigg(\frac{y}{2}\bigg)+C.}\\
 |  | 
|  | \end{array}</math> |  | \end{array}</math> | 
|  |  |  |  | 
|  | So, we have   |  | So, we have   | 
| − | ::<math>\int \frac{2}{y^2+4}~dy=\arctan\bigg(\frac{y}{2}\bigg)+C.</math> | + | ::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math> | 
|  |  |  |  | 
|  | == Exercise 2 == |  | == Exercise 2 == | 
|  |  |  |  | 
| − | Evaluate theindefinite integral  <math style="vertical-align: -17px">\int \frac{\cos(x)}{(5+\sin x)^2}~dx.</math>
 | + | Calculate the derivative of  <math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math> | 
|  | + |   | 
|  | + | Notice that the function  <math style="vertical-align: -5px">g(x)</math>  is the product of three functions.  | 
|  |  |  |  | 
| − | Let  <math style="vertical-align: -5px">u=5+\sin(x).</math>  Then,  <math style="vertical-align: -5px">u=\cos(x)~dx.</math>
 | + | We start by grouping two of the functions together. So, we have  <math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math> | 
|  |  |  |  | 
| − | Plugging these into our integral, we get
 | + | Using the Product Rule, we get | 
|  |  |  |  | 
|  | ::<math>\begin{array}{rcl} |  | ::<math>\begin{array}{rcl} | 
| − | \displaystyle{\int \frac{\cos(x)}{(5+\sin x)^2}~dx} & = & \displaystyle{\int \frac{1}{u^2}~du}\\ | + | \displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{-\frac{1}{u}+C}\\ | + | & = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.} | 
|  | + | \end{array}</math> | 
|  | + |   | 
|  | + | Now, we need to use the Product Rule again. So, | 
|  | + |   | 
|  | + | ::<math>\begin{array}{rcl} | 
|  | + | \displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\ | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{-\frac{1}{5+\sin(x)}+C.} | + | & = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.} | 
|  | \end{array}</math> |  | \end{array}</math> | 
|  |  |  |  | 
|  | So, we have   |  | So, we have   | 
| − | ::<math>\int \frac{\cos(x)}{(5+\sin x)^2}~dx=-\frac{1}{5+\sin(x)}+C.</math> | + | ::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math> | 
|  |  |  |  | 
| − | == Exercise 3 == | + | But, there is another way to do this problem. Notice | 
|  | + |   | 
|  | + | ::<math>\begin{array}{rcl} | 
|  | + | \displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\ | 
|  | + | &&\\ | 
|  | + | & = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\ | 
|  | + | &&\\ | 
|  | + | & = & \displaystyle{2x\tan x.} | 
|  | + | \end{array}</math> | 
|  |  |  |  | 
| − | Evaluate theindefinite integral  <math style="vertical-align: -16px">\int \frac{x+5}{2x+3}~dx.</math>
 | + | Now, you would only need to use the Product Rule once instead of twice. | 
|  |  |  |  | 
| − | Here, the substitution is not obvious. 
 | + | == Exercise 3 == | 
|  |  |  |  | 
| − | Let  <math style="vertical-align: -3px">u=2x+3.</math>  Then,  <math style="vertical-align: -1px">du=2~dx</math>  and  <math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
 | + | Calculate the derivative of  <math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math> | 
|  |  |  |  | 
| − | Now, weneed a way of getting rid of  <math style="vertical-align: -2px">x+5</math>  in the numerator. 
 | + | Using the Quotient Rule, we have | 
|  |  |  |  | 
| − | Solving for  <math style="vertical-align:0px">x</math>  in the first equation, we get  <math style="vertical-align: -14px">x=\frac{1}{2}u-\frac{3}{2}.</math>
 | + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math> | 
|  |  |  |  | 
| − | Plugging these into our integral, weget 
 | + | Now, we need to use the Product Rule. So, we have | 
|  |  |  |  | 
|  | ::<math>\begin{array}{rcl} |  | ::<math>\begin{array}{rcl} | 
| − | \displaystyle{\int \frac{x+5}{2x+3}~dx} & = & \displaystyle{\int \frac{(\frac{1}{2}u-\frac{3}{2})+5}{2u}~du}\\ | + | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\ | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\frac{1}{2}\int \frac{\frac{1}{2}u+\frac{7}{2}}{u}~du}\\
 |  | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\frac{1}{4}\int \frac{u+7}{u}~du}\\
 |  | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\frac{1}{4}\int 1+\frac{7}{u}~du}\\
 |  | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{\frac{1}{4}(u+7\ln|u|)+C}\\ | + | & = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.} | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\frac{1}{4}(2x+3+7\ln|2x+3|)+C.}\\
 |  | 
|  | \end{array}</math> |  | \end{array}</math> | 
|  |  |  |  | 
|  | So, we get |  | So, we get | 
| − | ::<math>\int \frac{x+5}{2x+3}~dx=\frac{1}{4}(2x+3+7\ln|2x+3|)+C.</math> | + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math> | 
|  |  |  |  | 
|  | == Exercise 4 == |  | == Exercise 4 == | 
|  |  |  |  | 
| − | Evaluate theindefinite integral  <math style="vertical-align: -14px">\int \frac{x^2+4}{x+2}~dx.</math>
 | + | Calculate the derivative of   <math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math> | 
|  |  |  |  | 
| − | Let  <math style="vertical-align: -2px">u=x+2.</math>  Then, <math style="vertical-align: -1px">du=dx.</math> 
 | + | First, using the Quotient Rule, we have | 
|  |  |  |  | 
| − | Now, we need a way of replacing  <mathstyle="vertical-align: -2px">x^2+4.</math>
 | + | ::<math>\begin{array}{rcl} | 
|  | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\ | 
|  | + | &&\\ | 
|  | + | & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.} | 
|  | + | \end{array}</math> | 
|  |  |  |  | 
| − | If we solve for  <math style="vertical-align: 0px">x</math>  in our first equation, we get  <math style="vertical-align: -1px">x=u-2.</math> 
 | + | Now, we need to use the Product Rule. So, we have | 
| − |   |  | 
| − | Now, we square both sides of this last equation toget  <math style="vertical-align: -5px">x^2=(u-2)^2.</math> |  | 
| − |   |  | 
| − | Plugging in to our integral, weget 
 |  | 
|  |  |  |  | 
|  | ::<math>\begin{array}{rcl} |  | ::<math>\begin{array}{rcl} | 
| − | \displaystyle{\int \frac{x^2+4}{x+2}~dx} & = & \displaystyle{\int \frac{(u-2)^2+4}{u}~du}\\ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\ | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\int \frac{u^2-4u+4+4}{u}~du}\\
 |  | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\int \frac{u^2-4u+8}{u}~du}\\
 |  | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\int u-4+\frac{8}{u}~du}\\
 |  | 
| − | &&\\
 |  | 
| − | & = & \displaystyle{\frac{u^2}{2}-4u+8\ln|u|+C}\\
 |  | 
|  | &&\\ |  | &&\\ | 
| − | & = & \displaystyle{\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.}\\ | + | & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.} | 
|  | \end{array}</math> |  | \end{array}</math> | 
|  |  |  |  | 
|  | So, we have   |  | So, we have   | 
| − | ::<math>\int \frac{x^2+4}{x+2}~dx=\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.</math> | + | ::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math> | 
Introduction
Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule. 
For example, if   then
  then   
But, what about more complicated functions? 
For example, what is   when
  when   
Or what about   when
  when   
Notice   is a product, and
  is a product, and   is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
  is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
Product Rule
Let   Then,
  Then,
 
 
Quotient Rule
Let   Then,
  Then,
 
 
Warm-Up
Calculate   
1)    
| Solution: | 
| Using the Product Rule, we have | 
| 
 | 
| Then, using the Power Rule, we have | 
| 
 | 
| NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function. | 
| You can distribute the terms and then use the Power Rule. | 
| In this case, we have | 
| 
 | 
| Now, using the Power Rule, we get | 
| 
 | 
| In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule. | 
| Final Answer: | 
|   | 
| or equivalently | 
|   | 
2)    
| Final Answer: | 
|   | 
| or equivalently | 
|   | 
3)    
| Solution: | 
| Using the Quotient Rule, we get | 
| 
 | 
| since  and   | 
| Since  we have | 
| 
 | 
| Final Answer: | 
|   | 
Exercise 1
Calculate the derivative of   
First, we need to know the derivative of   Recall
  Recall
 
 
Now, using the Quotient Rule, we have
 
 
Using the Product Rule and Power Rule, we have 
 
 
So, we have 
 
 
Exercise 2
Calculate the derivative of   
Notice that the function   is the product of three functions.
  is the product of three functions. 
We start by grouping two of the functions together. So, we have   
Using the Product Rule, we get
 
 
Now, we need to use the Product Rule again. So,
 
 
So, we have 
 
 
But, there is another way to do this problem. Notice
 
 
Now, you would only need to use the Product Rule once instead of twice.
Exercise 3
Calculate the derivative of   
Using the Quotient Rule, we have
 
 
Now, we need to use the Product Rule. So, we have
 
 
So, we get
 
 
Exercise 4
Calculate the derivative of    
First, using the Quotient Rule, we have
 
 
Now, we need to use the Product Rule. So, we have
 
 
So, we have 
