Difference between revisions of "Product Rule and Quotient Rule"
Kayla Murray (talk | contribs) |
|||
(17 intermediate revisions by one other user not shown) | |||
Line 2: | Line 2: | ||
Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule. | Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule. | ||
− | For example, if <math>f(x)=x^3+2x^2+5x+3,</math> then <math>f'(x)=3x^2+4x+5.</math> | + | For example, if <math style="vertical-align: -5px">f(x)=x^3+2x^2+5x+3,</math> then <math style="vertical-align: -5px">f'(x)=3x^2+4x+5.</math> |
But, what about more <em>complicated functions</em>? | But, what about more <em>complicated functions</em>? | ||
− | For example, what is <math>f'(x)</math> when <math>f(x)=\sin x \cos x?</math> | + | For example, what is <math style="vertical-align: -5px">f'(x)</math> when <math style="vertical-align: -5px">f(x)=\sin x \cos x?</math> |
− | Or what about <math>g'(x)</math> when <math>g(x)=\frac{x}{x+1}?</math> | + | Or what about <math style="vertical-align: -5px">g'(x)</math> when <math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math> |
− | Notice <math>f(x)</math> is a product and <math>g(x)</math> is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives. | + | Notice <math style="vertical-align: -5px">f(x)</math> is a product, and <math style="vertical-align: -5px">g(x)</math> is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives. |
'''Product Rule''' | '''Product Rule''' | ||
− | Let <math>h(x)=f(x)g(x).</math> Then, | + | Let <math style="vertical-align: -5px">h(x)=f(x)g(x).</math> Then, |
::<math>h'(x)=f(x)g'(x)+f'(x)g(x).</math> | ::<math>h'(x)=f(x)g'(x)+f'(x)g(x).</math> | ||
Line 20: | Line 20: | ||
'''Quotient Rule''' | '''Quotient Rule''' | ||
− | Let <math>h(x)=\frac{f(x)}{g(x)}.</math> Then, | + | Let <math style="vertical-align: -19px">h(x)=\frac{f(x)}{g(x)}.</math> Then, |
::<math>h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.</math> | ::<math>h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.</math> | ||
==Warm-Up== | ==Warm-Up== | ||
− | + | Calculate <math style="vertical-align: -5px">f'(x).</math> | |
− | '''1)''' <math> | + | '''1)''' <math style="vertical-align: -7px">f(x)=(x^2+x+1)(x^3+2x^2+4)</math> |
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | |Using the Product Rule, we have |
|- | |- | ||
+ | | | ||
+ | ::<math>f'(x)=(x^2+x+1)(x^3+2x^2+4)'+(x^2+x+1)'(x^3+2x^2+4).</math> | ||
|- | |- | ||
− | | | + | |Then, using the Power Rule, we have |
|- | |- | ||
− | | | + | | |
+ | ::<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4).</math> | ||
+ | |- | ||
+ | |- | ||
+ | |<u>NOTE:</u> It is not necessary to use the Product Rule to calculate the derivative of this function. | ||
+ | |- | ||
+ | |You can distribute the terms and then use the Power Rule. | ||
+ | |- | ||
+ | |In this case, we have | ||
|- | |- | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{\ | + | \displaystyle{f(x)} & = & \displaystyle{(x^2+x+1)(x^3+2x^2+4)}\\ |
+ | &&\\ | ||
+ | & = & \displaystyle{x^2(x^3+2x^2+4)+x(x^3+2x^2+4)+1(x^3+2x^2+4)}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{x^5+2x^4+4x^2+x^4+2x^3+4x+x^3+2x^2+4} \\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{x^5+3x^4+3x^3+6x^2+4x+4.} |
\end{array}</math> | \end{array}</math> | ||
+ | |- | ||
+ | |Now, using the Power Rule, we get | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)=5x^4+12x^3+9x^2+12x+4.</math> | ||
+ | |- | ||
+ | |In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule. | ||
|} | |} | ||
Line 52: | Line 71: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math> | + | | <math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)</math> |
|- | |- | ||
+ | |or equivalently | ||
+ | |- | ||
+ | | <math>f'(x)=x^5+3x^4+3x^3+6x^2+4x+4</math> | ||
|} | |} | ||
− | '''2)''' <math> | + | '''2)''' <math style="vertical-align: -14px">f(x)=\frac{x^2+x^3}{x}</math> |
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | | |
− | + | Using the Quotient Rule, we have | |
− | |||
|- | |- | ||
| | | | ||
− | ::<math> | + | ::<math>f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Then, using the Power Rule, we have |
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | |
+ | ::<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.</math> | ||
|- | |- | ||
− | | | + | |<u>NOTE:</u> It is not necessary to use the Quotient Rule to calculate the derivative of this function. |
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |You can divide and then use the Power Rule. |
|- | |- | ||
− | | | + | |In this case, we have |
|- | |- | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{x+x^2.} \\ |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
+ | |Now, using the Power Rule, we get | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)=1+2x.</math> | ||
|} | |} | ||
Line 106: | Line 118: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>- | + | || <math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}</math> |
+ | |- | ||
+ | |or equivalently | ||
+ | |- | ||
+ | | <math>f'(x)=1+2x</math> | ||
+ | |||
|- | |- | ||
|} | |} | ||
− | ''' | + | '''3)''' <math style="vertical-align: -14px">f(x)=\frac{\sin x}{\cos x}</math> |
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | |Using the Quotient Rule, we get |
− | |||
− | |||
|- | |- | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{\ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\ |
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{1}{2} | + | & = & \displaystyle{\frac{1}{\cos^2 x}}\\ |
+ | &&\\ | ||
+ | & = & \displaystyle{\sec^2 x} | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
+ | |since <math style="vertical-align: -2px">\sin^2 x+\cos^2 x=1</math> and <math style="vertical-align: -13px">\sec x=\frac{1}{\cos x}.</math> | ||
+ | |- | ||
+ | |Since <math style="vertical-align: -14px">\frac{\sin x}{\cos x}=\tan x,</math> we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\frac{d}{dx}{\tan x}=\sec^2 x.</math> | ||
|} | |} | ||
Line 133: | Line 158: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>\ | + | | <math>f'(x)=\sec^2 x</math> |
|- | |- | ||
|} | |} | ||
Line 139: | Line 164: | ||
== Exercise 1 == | == Exercise 1 == | ||
− | + | Calculate the derivative of <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}(\csc x-4).</math> | |
− | First, we | + | First, we need to know the derivative of <math style="vertical-align: 0px">\csc x.</math> Recall |
− | + | ::<math>\csc x =\frac{1}{\sin x}.</math> | |
+ | |||
+ | Now, using the Quotient Rule, we have | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{1}{2}\ | + | & = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\ |
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\csc x \cot x.} | ||
\end{array}</math> | \end{array}</math> | ||
− | + | Using the Product Rule and Power Rule, we have | |
− | |||
− | |||
− | |||
− | |||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\ |
− | |||
− | |||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\ | + | & = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\ | + | & = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | ::<math> | + | ::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math> |
== Exercise 2 == | == Exercise 2 == | ||
− | + | Calculate the derivative of <math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math> | |
− | + | Notice that the function <math style="vertical-align: -5px">g(x)</math> is the product of three functions. | |
− | + | We start by grouping two of the functions together. So, we have <math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math> | |
+ | |||
+ | Using the Product Rule, we get | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.} |
+ | \end{array}</math> | ||
+ | |||
+ | Now, we need to use the Product Rule again. So, | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | ::<math> | + | ::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math> |
+ | |||
+ | But, there is another way to do this problem. Notice | ||
− | == | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2x\tan x.} | ||
+ | \end{array}</math> | ||
− | + | Now, you would only need to use the Product Rule once instead of twice. | |
− | + | == Exercise 3 == | |
− | + | Calculate the derivative of <math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math> | |
− | + | Using the Quotient Rule, we have | |
− | + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math> | |
− | + | Now, we need to use the Product Rule. So, we have | |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.} |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
So, we get | So, we get | ||
− | ::<math> | + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math> |
== Exercise 4 == | == Exercise 4 == | ||
− | + | Calculate the derivative of <math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math> | |
− | + | First, using the Quotient Rule, we have | |
− | + | ::<math>\begin{array}{rcl} | |
− | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.} | |
− | + | \end{array}</math> | |
− | + | Now, we need to use the Product Rule. So, we have | |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\ |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | ::<math> | + | ::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math> |
Latest revision as of 22:46, 4 October 2017
Introduction
Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.
For example, if then
But, what about more complicated functions?
For example, what is when
Or what about when
Notice is a product, and is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
Product Rule
Let Then,
Quotient Rule
Let Then,
Warm-Up
Calculate
1)
Solution: |
---|
Using the Product Rule, we have |
|
Then, using the Power Rule, we have |
|
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function. |
You can distribute the terms and then use the Power Rule. |
In this case, we have |
|
Now, using the Power Rule, we get |
|
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule. |
Final Answer: |
---|
or equivalently |
2)
Solution: |
---|
Using the Quotient Rule, we have |
|
Then, using the Power Rule, we have |
|
NOTE: It is not necessary to use the Quotient Rule to calculate the derivative of this function. |
You can divide and then use the Power Rule. |
In this case, we have |
|
Now, using the Power Rule, we get |
|
Final Answer: |
---|
or equivalently |
3)
Solution: |
---|
Using the Quotient Rule, we get |
|
since and |
Since we have |
|
Final Answer: |
---|
Exercise 1
Calculate the derivative of
First, we need to know the derivative of Recall
Now, using the Quotient Rule, we have
Using the Product Rule and Power Rule, we have
So, we have
Exercise 2
Calculate the derivative of
Notice that the function is the product of three functions.
We start by grouping two of the functions together. So, we have
Using the Product Rule, we get
Now, we need to use the Product Rule again. So,
So, we have
But, there is another way to do this problem. Notice
Now, you would only need to use the Product Rule once instead of twice.
Exercise 3
Calculate the derivative of
Using the Quotient Rule, we have
Now, we need to use the Product Rule. So, we have
So, we get
Exercise 4
Calculate the derivative of
First, using the Quotient Rule, we have
Now, we need to use the Product Rule. So, we have
So, we have