Difference between revisions of "031 Review Problems"

From Grad Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
  
'''1.''' True or false: If all the entries of a <math>7\times 7</math> matrix <math>A</math> are <math>7,</math> then det <math>A</math> must be <math>7^7.</math>
+
'''1.''' True or false: If all the entries of a &nbsp;<math style="vertical-align: 0px">7\times 7</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">7,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\text{det }A</math>&nbsp; must be &nbsp;<math style="vertical-align: 0px">7^7.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 17: Line 17:
 
|}
 
|}
  
'''2.''' True or false: If a matrix <math>A^2</math> is diagonalizable, then the matrix <math>A</math> must be diagonalizable as well.
+
'''2.''' True or false: If a matrix &nbsp;<math style="vertical-align: 0px">A^2</math>&nbsp; is diagonalizable, then the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must be diagonalizable as well.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 32: Line 32:
 
|}
 
|}
  
'''3.''' True or false: If <math>A</math> is a <math>4\times 4</math> matrix with characteristic equation <math>\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math> then <math>A</math> is diagonalizable.
+
'''3.''' True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: -1px">4\times 4</math>&nbsp; matrix with characteristic equation &nbsp;<math style="vertical-align: -5px">\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 47: Line 47:
 
|}
 
|}
  
'''4.''' True or false: If <math>A</math> is invertible, then <math>A</math> is diagonalizable.
+
'''4.''' True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 62: Line 62:
 
|}
 
|}
  
'''5.''' True or false: If <math>A</math> and <math>B</math> are invertible <math>n\times n</math> matrices, then so is <math>A+B.</math>
+
'''5.''' True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; are invertible &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrices, then so is &nbsp;<math style="vertical-align: -1px">A+B.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 77: Line 77:
 
|}
 
|}
  
'''6.''' True or false: If <math>A</math> is a <math>3\times 5</math> matrix and dim Nul <math>A=2,</math> then <math>A\vec{x}=\vec{b}</math> is consistent for all <math>\vec{b}</math> in <math>\mathbb{R}^3.</math>
+
'''6.''' True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">3\times 5</math>&nbsp; matrix and &nbsp;<math style="vertical-align: -4px">\text{dim Nul }A=2,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">A\vec{x}=\vec{b}</math>&nbsp; is consistent for all &nbsp;<math style="vertical-align: 0px">\vec{b}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^3.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 92: Line 92:
 
|}
 
|}
  
'''7.''' True or false: Let <math>C=AB</math> for <math>4\times 4</math> matrices <math>A</math> and <math>B.</math> If <math>C</math> is invertible, then <math>A</math> is invertible.
+
'''7.''' True or false: Let &nbsp;<math style="vertical-align: 0px">C=AB</math>&nbsp; for &nbsp;<math style="vertical-align: 0px">4\times 4</math>&nbsp; matrices &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B.</math>&nbsp; If &nbsp;<math style="vertical-align: 0px">C</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 107: Line 107:
 
|}
 
|}
  
'''8.''' True or false: Let <math>W</math> be a subspace of <math>\mathbb{R}^4</math> and <math>\vec{v}</math> be a vector in <math>\mathbb{R}^4.</math> If <math>\vec{v}\in W</math> and <math>\vec{v}\in W^\perp,</math> then <math>\vec{v}=\vec{0}.</math>
+
'''8.''' True or false: Let &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; be a subspace of &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; be a vector in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4.</math>&nbsp; If &nbsp;<math style="vertical-align: 0px">\vec{v}\in W</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">\vec{v}\in W^\perp,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\vec{v}=\vec{0}.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 122: Line 122:
 
|}
 
|}
  
'''9.''' True or false: If <math>A</math> is an invertible <math>3\times 3</math> matrix, and <math>B</math> and <math>C</math> are <math>3\times 3</math> matrices such that <math>AB=AC,</math> then <math>B=C.</math>
+
'''9.''' True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an invertible &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix, and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">C</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrices such that &nbsp;<math style="vertical-align: -4px">AB=AC,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B=C.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 139: Line 139:
 
'''10.'''  
 
'''10.'''  
  
(a) Is the matrix <math>A=     
+
(a) Is the matrix &nbsp;<math style="vertical-align: -18px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           3 & 1 \\
 
           3 & 1 \\
 
           0 & 3  
 
           0 & 3  
         \end{bmatrix}</math> diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
+
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
 
          
 
          
(b) Is the matrix <math>A=     
+
(b) Is the matrix &nbsp;<math style="vertical-align: -31px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           2 & 0 & -2 \\
 
           2 & 0 & -2 \\
 
           1 & 3  & 2 \\
 
           1 & 3  & 2 \\
 
           0 & 0 & 3  
 
           0 & 0 & 3  
         \end{bmatrix}</math> diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
+
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 165: Line 165:
 
|}
 
|}
  
'''11.''' Find the eigenvalues and eigenvectors of the matrix <math>A=     
+
'''11.''' Find the eigenvalues and eigenvectors of the matrix &nbsp;<math style="vertical-align: -31px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & 1 & 1 \\
 
           1 & 1 & 1 \\
Line 185: Line 185:
 
|}
 
|}
  
'''12.''' Consider the matrix <math>A=     
+
'''12.''' Consider the matrix &nbsp;<math style="vertical-align: -31px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & -4 & 9 & -7 \\
 
           1 & -4 & 9 & -7 \\
 
           -1 & 2  & -4 & 1 \\
 
           -1 & 2  & -4 & 1 \\
 
           5 & -6 & 10 & 7  
 
           5 & -6 & 10 & 7  
         \end{bmatrix}</math> and assume that it is row equivalent to the matrix  
+
         \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix  
  
<math>B=     
+
::<math>B=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & 0 & -1 & 5 \\
 
           1 & 0 & -1 & 5 \\
Line 199: Line 199:
 
         \end{bmatrix}.</math>       
 
         \end{bmatrix}.</math>       
 
      
 
      
(a) List rank <math>A</math> and dim Nul <math>A.</math>
+
(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
  
(b) Find bases for Col <math>A</math> and Nul <math>A.</math> Find an example of a nonzero vector that belongs to Col <math>A,</math> as well as an example of a nonzero vector that belongs to Nul <math>A.</math>
+
(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 218: Line 218:
 
'''13.''' Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
 
'''13.''' Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
  
<math>\begin{bmatrix}
+
::<math>\begin{bmatrix}
 
           1  \\
 
           1  \\
 
           0 \\
 
           0 \\
Line 253: Line 253:
  
 
'''14.''' Let   
 
'''14.''' Let   
<math>B=     
+
&nbsp;<math>B=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & -2 & 3 & 4\\
 
           1 & -2 & 3 & 4\\
Line 262: Line 262:
 
  </math>
 
  </math>
 
    
 
    
(a) Is <math>B</math> invertible? Explain.
+
(a) Is &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; invertible? Explain.
  
(b) Define a linear transformation <math>T</math> by the formula <math>T(\vec{x})=B\vec{x}.</math> Is <math>T</math> onto? Explain.
+
(b) Define a linear transformation &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; by the formula &nbsp;<math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math>&nbsp; Is &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; onto? Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 279: Line 279:
 
|}
 
|}
  
'''15.''' Suppose <math>T</math> is a linear transformation given by the formula  
+
'''15.''' Suppose &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is a linear transformation given by the formula  
  
<math>T\Bigg(
+
::<math>T\Bigg(
 
\begin{bmatrix}
 
\begin{bmatrix}
 
           x_1 \\
 
           x_1 \\
Line 293: Line 293:
 
         \end{bmatrix}</math>
 
         \end{bmatrix}</math>
 
          
 
          
(a) Find the standard matrix for <math>T.</math>
+
(a) Find the standard matrix for &nbsp;<math style="vertical-align: 0px">T.</math>
 
          
 
          
(b) Let <math>\vec{u}=7\vec{e_1}-4\vec{e_2}.</math> Find <math>T(\vec{u}).</math>
+
(b) Let &nbsp;<math style="vertical-align: -5px">\vec{u}=7\vec{e_1}-4\vec{e_2}.</math>&nbsp; Find &nbsp;<math style="vertical-align: -6px">T(\vec{u}).</math>
 
          
 
          
(c) Is <math>\begin{bmatrix}
+
(c) Is &nbsp;<math style="vertical-align: -21px">\begin{bmatrix}
 
           -1 \\
 
           -1 \\
 
           3  
 
           3  
         \end{bmatrix}</math> in the range of <math>T?</math> Explain.
+
         \end{bmatrix}</math>&nbsp; in the range of &nbsp;<math style="vertical-align: 0px">T?</math>&nbsp; Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 315: Line 315:
 
|}
 
|}
  
'''16.''' Let <math>A</math> and <math>B</math> be <math>6\times 6</math> matrices with det <math>A=-10</math> and det <math>B=5.</math> Use properties of  
+
'''16.''' Let &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; be &nbsp;<math style="vertical-align: 0px">6\times 6</math>&nbsp; matrices with &nbsp;<math style="vertical-align: -1px">\text{det }A=-10</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{det }B=5.</math>&nbsp; Use properties of determinants to compute:
  
determinants to compute:
+
(a) &nbsp;<math style="vertical-align: -2px">\text{det }3A</math>
  
(a) det <math>3A</math>
+
(b) &nbsp;<math style="vertical-align: -7px">\text{det }(A^TB^{-1})</math>
 
 
(b) det <math>(A^TB^{-1})</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 336: Line 334:
 
|}
 
|}
  
'''17.''' Let <math>A=     
+
'''17.''' Let &nbsp;<math style="vertical-align: -20px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           5 & 1 \\
 
           5 & 1 \\
Line 342: Line 340:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
  
(a) Find a basis for the eigenspace(s) of <math>A.</math>
+
(a) Find a basis for the eigenspace(s) of &nbsp;<math style="vertical-align: 0px">A.</math>
  
(b) Is the matrix <math>A</math> diagonalizable? Explain.
+
(b) Is the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; diagonalizable? Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 359: Line 357:
 
|}
 
|}
  
'''18.''' Let <math>\vec{v}=\begin{bmatrix}
+
'''18.''' Let &nbsp;<math>\vec{v}=\begin{bmatrix}
 
           -1 \\
 
           -1 \\
 
           3 \\
 
           3 \\
 
           0
 
           0
         \end{bmatrix}</math> and <math>\vec{y}=\begin{bmatrix}
+
         \end{bmatrix}</math>&nbsp; and &nbsp;<math>\vec{y}=\begin{bmatrix}
 
           2 \\
 
           2 \\
 
           0 \\
 
           0 \\
Line 369: Line 367:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
 
          
 
          
(a) Find a unit vector in the direction of <math>\vec{v}.</math>
+
(a) Find a unit vector in the direction of &nbsp;<math style="vertical-align: 0px">\vec{v}.</math>
 
          
 
          
(b) Find the distance between <math>\vec{v}</math> and <math>\vec{y}.</math>
+
(b) Find the distance between &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">\vec{y}.</math>
 
          
 
          
(c) Let <math>L=</math>Span<math>\{\vec{v}\}.</math> Compute the orthogonal projection of <math>\vec{y}</math> onto <math>L.</math>
+
(c) Let &nbsp;<math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math>&nbsp; Compute the orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 388: Line 386:
 
|}
 
|}
  
'''19.''' Let <math>W=</math>Span<math>\Bigg\{\begin{bmatrix}
+
'''19.''' Let &nbsp;<math>W=\text{Span }\Bigg\{\begin{bmatrix}
 
           2 \\
 
           2 \\
 
           0 \\
 
           0 \\
Line 398: Line 396:
 
           0 \\
 
           0 \\
 
           0
 
           0
         \end{bmatrix}\Bigg\}.</math> Is <math>\begin{bmatrix}
+
         \end{bmatrix}\Bigg\}.</math>&nbsp; Is &nbsp;<math>\begin{bmatrix}
 
           2 \\
 
           2 \\
 
           6 \\
 
           6 \\
 
           4 \\
 
           4 \\
 
           0
 
           0
         \end{bmatrix}</math> in <math>W^\perp?</math> Explain.
+
         \end{bmatrix}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">W^\perp?</math>&nbsp; Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 420: Line 418:
 
'''20.'''  
 
'''20.'''  
  
(a) Let <math>T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math> be a transformation given by  
+
(a) Let &nbsp;<math style="vertical-align: -2px">T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math>&nbsp; be a transformation given by  
  
<math>T\bigg(
+
::<math>T\bigg(
 
\begin{bmatrix}
 
\begin{bmatrix}
 
           x \\
 
           x \\
Line 433: Line 431:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
  
Determine whether <math>T</math> is a linear transformation. Explain.
+
Determine whether &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is a linear transformation. Explain.
  
(b) Let <math>A=     
+
(b) Let &nbsp;<math style="vertical-align: -19px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & -3 & 0 \\
 
           1 & -3 & 0 \\
 
           -4 & 1 &1
 
           -4 & 1 &1
         \end{bmatrix}</math> and <math>B=     
+
         \end{bmatrix}</math>&nbsp; and &nbsp;<math style="vertical-align: -32px">B=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           2 & 1\\
 
           2 & 1\\
 
           1 & 0 \\
 
           1 & 0 \\
 
           -1 & 1
 
           -1 & 1
         \end{bmatrix}.</math> Find <math>AB,</math> <math>BA^T</math> and <math>A-B^T.</math>
+
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: -4px">AB,~BA^T</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">A-B^T.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 459: Line 457:
 
|}
 
|}
  
'''21.'''  
+
'''21.''' Let &nbsp;<math style="vertical-align: -31px">A=   
 +
    \begin{bmatrix}
 +
          1 & 3 & 8 \\
 +
          2 & 4 &11\\
 +
          1 & 2 & 5
 +
        \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; if possible.
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 473: Line 477:
 
|}
 
|}
  
'''22.'''  
+
'''22.''' Find a formula for &nbsp;<math>\begin{bmatrix}
 +
          1 & -6  \\
 +
          2 & -6
 +
        \end{bmatrix}^k</math>&nbsp; by diagonalizing the matrix.
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 488: Line 496:
  
 
'''23.'''  
 
'''23.'''  
 +
 +
(a) Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 2, then &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: -2px">A^3-A^2+I.</math>&nbsp; What is the corresponding eigenvalue?
 +
 +
(b) Show that if &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 3 and &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}.</math>&nbsp; What is the corresponding eigenvalue?
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 501: Line 514:
 
|}
 
|}
  
'''24.'''  
+
'''24.''' Let &nbsp;<math>A=\begin{bmatrix}
 +
          3 & 0 & -1 \\
 +
          0 & 1 &-3\\
 +
          1 & 0 & 0
 +
        \end{bmatrix}\begin{bmatrix}
 +
          3 & 0 & 0 \\
 +
          0 & 4 &0\\
 +
          0 & 0 & 3
 +
        \end{bmatrix}\begin{bmatrix}
 +
          0 & 0 & 1 \\
 +
          -3 & 1 &9\\
 +
          -1 & 0 & 3
 +
        \end{bmatrix}.</math>
 +
 
 +
Use the Diagonalization Theorem to find the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and a basis for each eigenspace.
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 515: Line 543:
 
|}
 
|}
  
'''25.'''  
+
'''25.''' Give an example of a &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; with eigenvalues 5,-1 and 3.
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 529: Line 558:
 
|}
 
|}
  
'''26.'''  
+
'''26.''' Assume &nbsp;<math style="vertical-align: 0px">A^2=I.</math>&nbsp; Find &nbsp;<math style="vertical-align: -1px">\text{Nul }A.</math>
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 543: Line 573:
 
|}
 
|}
  
'''27.'''  
+
'''27.''' If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix such that &nbsp;<math style="vertical-align: -4px">AA^T=I,</math>&nbsp; what are the possible values of &nbsp;<math style="vertical-align: 0px">\text{det }A?</math>
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 557: Line 588:
 
|}
 
|}
  
'''28.'''  
+
'''28.''' Show that if &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of the matrix product &nbsp;<math style="vertical-align: 0px">AB</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">BA.</math>
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 572: Line 604:
  
 
'''29.'''  
 
'''29.'''  
 +
 +
(a) Suppose a &nbsp;<math style="vertical-align: 0px">6\times 8</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has 4 pivot columns. What is &nbsp;<math style="vertical-align: -1px">\text{dim Nul }A?</math>&nbsp; Is &nbsp;<math style="vertical-align: -1px">\text{Col }A=\mathbb{R}^4?</math>&nbsp; Why or why not?
 +
 +
(b) If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">7\times 5</math>&nbsp; matrix, what is the smallest possible dimension of &nbsp;<math style="vertical-align: -1px">\text{Nul }A?</math>
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 585: Line 622:
 
|}
 
|}
  
'''30.'''  
+
'''30.''' Consider the following system of equations.
 +
 
 +
::<math>x_1+kx_2=1</math>
 +
 
 +
::<math>3x_1+5x_2=2k</math>
 +
 
 +
Find all real values of &nbsp;<math style="vertical-align: 0px">k</math>&nbsp; such that the system has only one solution.
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 599: Line 643:
 
|}
 
|}
  
'''31.'''  
+
'''31.''' Suppose &nbsp;<math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math>&nbsp; is a basis of the eigenspace corresponding to the eigenvalue 0 of a &nbsp;<math style="vertical-align: 0px">5\times 5</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A.</math>
 +
 
 +
(a) Is &nbsp;<math style="vertical-align: 0px">\vec{w}=\vec{u}-2\vec{v}</math>&nbsp; an eigenvector of &nbsp;<math style="vertical-align: 0px">A?</math>&nbsp; If so, find the corresponding eigenvalue.
 +
 
 +
If not, explain why.
 +
 
 +
(b) Find the dimension of &nbsp;<math style="vertical-align: -1px">\text{Col }A.</math>
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;

Latest revision as of 13:11, 25 August 2017

This is a list of sample problems and is meant to represent the material usually covered in Math 31. An actual test may or may not be similar.


1. True or false: If all the entries of a    matrix    are    then    must be  

Solution:  
Final Answer:  

2. True or false: If a matrix    is diagonalizable, then the matrix    must be diagonalizable as well.

Solution:  
Final Answer:  

3. True or false: If    is a    matrix with characteristic equation    then    is diagonalizable.

Solution:  
Final Answer:  

4. True or false: If    is invertible, then    is diagonalizable.

Solution:  
Final Answer:  

5. True or false: If    and    are invertible    matrices, then so is  

Solution:  
Final Answer:  

6. True or false: If    is a    matrix and    then    is consistent for all    in  

Solution:  
Final Answer:  

7. True or false: Let    for    matrices    and    If    is invertible, then    is invertible.

Solution:  
Final Answer:  

8. True or false: Let    be a subspace of    and    be a vector in    If    and    then  

Solution:  
Final Answer:  

9. True or false: If    is an invertible    matrix, and    and    are    matrices such that    then  

Solution:  
Final Answer:  

10.

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

Solution:  
Final Answer:  

11. Find the eigenvalues and eigenvectors of the matrix  

Solution:  
Final Answer:  

12. Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  

Solution:  
Final Answer:  

13. Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?

Solution:  
Final Answer:  

14. Let  

(a) Is    invertible? Explain.

(b) Define a linear transformation    by the formula    Is    onto? Explain.

Solution:  
Final Answer:  

15. Suppose    is a linear transformation given by the formula

(a) Find the standard matrix for  

(b) Let    Find  

(c) Is    in the range of    Explain.

Solution:  
Final Answer:  

16. Let    and    be    matrices with    and    Use properties of determinants to compute:

(a)  

(b)  

Solution:  
Final Answer:  

17. Let  

(a) Find a basis for the eigenspace(s) of  

(b) Is the matrix    diagonalizable? Explain.

Solution:  
Final Answer:  

18. Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  

Solution:  
Final Answer:  

19. Let    Is    in    Explain.

Solution:  
Final Answer:  

20.

(a) Let    be a transformation given by

Determine whether    is a linear transformation. Explain.

(b) Let    and    Find    and  

Solution:  
Final Answer:  

21. Let    Find    if possible.

Solution:  
Final Answer:  

22. Find a formula for    by diagonalizing the matrix.

Solution:  
Final Answer:  

23.

(a) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 2, then    is an eigenvector of    What is the corresponding eigenvalue?

(b) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 3 and    is invertible, then    is an eigenvector of    What is the corresponding eigenvalue?

Solution:  
Final Answer:  

24. Let  

Use the Diagonalization Theorem to find the eigenvalues of    and a basis for each eigenspace.

Solution:  
Final Answer:  

25. Give an example of a    matrix    with eigenvalues 5,-1 and 3.

Solution:  
Final Answer:  

26. Assume    Find  

Solution:  
Final Answer:  

27. If    is an    matrix such that    what are the possible values of  

Solution:  
Final Answer:  

28. Show that if    is an eigenvector of the matrix product    and    then    is an eigenvector of  

Solution:  
Final Answer:  

29.

(a) Suppose a    matrix    has 4 pivot columns. What is    Is    Why or why not?

(b) If    is a    matrix, what is the smallest possible dimension of  

Solution:  
Final Answer:  

30. Consider the following system of equations.

Find all real values of    such that the system has only one solution.

Solution:  
Final Answer:  

31. Suppose    is a basis of the eigenspace corresponding to the eigenvalue 0 of a    matrix  

(a) Is    an eigenvector of    If so, find the corresponding eigenvalue.

If not, explain why.

(b) Find the dimension of  

Solution:  
Final Answer: