Difference between revisions of "009A Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
<span class="exam"> Calculate the equation of the tangent line to the curve defined by &nbsp;<math style="vertical-align: -4px">x^3+y^3=2xy</math>&nbsp; at the point, &nbsp;<math style="vertical-align: -5px">(1,1).</math>
 
<span class="exam"> Calculate the equation of the tangent line to the curve defined by &nbsp;<math style="vertical-align: -4px">x^3+y^3=2xy</math>&nbsp; at the point, &nbsp;<math style="vertical-align: -5px">(1,1).</math>
 +
<hr>
 +
[[009A Sample Final 3, Problem 5 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|The equation of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">y=m(x-a)+b</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">m=f'(a).</math>
 
|}
 
  
 +
[[009A Sample Final 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We use implicit differentiation to find the derivative of the given curve.
 
|-
 
|Using the product and chain rule, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>3x^2+3y^2y'=2y+2xy'.</math>
 
|-
 
|We rearrange the terms and solve for &nbsp;<math style="vertical-align: -5px">y'.</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>3x^2-2y=2xy'-3y^2y'</math>
 
|-
 
|and
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y'=\frac{3x^2-2y}{2x-3y^2}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Therefore, the slope of the tangent line at the point &nbsp;<math style="vertical-align: -5px">(1,1)</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{m} & = & \displaystyle{\frac{3(1)^2-2(1)}{2(1)-3(1)^2}}\\
 
&&\\
 
& = & \displaystyle{\frac{3-2}{2-3}}\\
 
&&\\
 
& = & \displaystyle{-1.}
 
\end{array}</math>
 
|-
 
|Hence, the equation of the tangent line to the curve at the point &nbsp;<math style="vertical-align: -5px">(1,1)</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>y=-1(x-1)+1.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=-1(x-1)+1</math>
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:40, 2 December 2017

Calculate the equation of the tangent line to the curve defined by    at the point,  


Solution


Detailed Solution


Return to Sample Exam