|
|
| (One intermediate revision by the same user not shown) |
| Line 1: |
Line 1: |
| − | <span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math style="vertical-align: -5px">f(x)=\cos(x)</math> approximates <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> within 0.0001 of the actual value. | + | <span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math style="vertical-align: -5px">f(x)=\cos(x)</math> approximates <math style="vertical-align: -13px">\cos \bigg(\frac{\pi}{3}\bigg)</math> within 0.0001 of the actual value. |
| | | | |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| + | <hr> |
| − | !Foundations:
| + | [[009C Sample Final 2, Problem 8 Solution|'''<u>Solution</u>''']] |
| − | |-
| |
| − | |'''Taylor's Theorem''' | |
| − | |-
| |
| − | | Let <math style="vertical-align: -5px">f</math> be a function whose <math style="vertical-align: -4px">(n+1)^{\mathrm{th}}</math> derivative exists on an interval <math style="vertical-align: 0px">I</math>, and let <math style="vertical-align: 0px">c</math> be in <math style="vertical-align: 0px">I.</math>
| |
| − | |-
| |
| − | | Then, for each <math style="vertical-align: 0px">x</math> in <math style="vertical-align: -4px">I,</math> there exists <math style="vertical-align: -3px">z_x</math> between <math style="vertical-align: 0px">x</math> and <math style="vertical-align: 0px">c</math> such that
| |
| − | |-
| |
| − | | <math>f(x)=f(c)+f'(c)(x-c)+\frac{f''(c)}{2!}(x-c)^2+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^n+R_n(x),</math>
| |
| − | |-
| |
| − | | where <math style="vertical-align: -18px">R_n(x)=\frac{f^{n+1}(z_x)}{(n+1)!}(x-c)^{n+1}.</math>
| |
| − | |-
| |
| − | | Also, <math style="vertical-align: -17px">|R_n(x)|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}|(x-c)^{n+1}|.</math>
| |
| − | |}
| |
| | | | |
| | | | |
| − | '''Solution:''' | + | [[009C Sample Final 2, Problem 8 Detailed Solution|'''<u>Detailed Solution</u>''']] |
| | | | |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |Using Taylor's Theorem, we have that the error in approximating <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> with
| |
| − | |-
| |
| − | |the Maclaurin polynomial of degree <math style="vertical-align: 0px">n</math> is <math style="vertical-align: -16px">R_n\bigg(\frac{\pi}{3}\bigg)</math> where
| |
| − | |-
| |
| − | | <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math>
| |
| − | |-
| |
| − | |
| |
| − | |}
| |
| | | | |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |We note that
| |
| − | |-
| |
| − | | <math style="vertical-align: -5px">|f^{n+1}(z)|=|\cos(z)|\le 1</math> or <math style="vertical-align: -5px">|f^{n+1}(z)|=|\sin(z)|\le 1.</math>
| |
| − | |-
| |
| − | |Therefore, we have
| |
| − | |-
| |
| − | | <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{1}{(n+1)!}\bigg(\frac{\pi}{3}\bigg)^{n+1}.</math>
| |
| − | |-
| |
| − | |Now, we have the following table.
| |
| − | |-
| |
| − | |<table border="1" cellspacing="0" cellpadding="6" align = "center">
| |
| − | <tr>
| |
| − | <td align = "center"><math> n</math></td>
| |
| − | <td align = "center"><math> \approx\frac{1}{(n+1)!}\bigg(\frac{\pi}{3}\bigg)^{n+1}</math></td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td align = "center"><math>1</math></td>
| |
| − | <td align = "center"><math> 0.548311 </math></td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td align = "center"><math>2</math></td>
| |
| − | <td align = "center"><math> 0.191396</math></td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td align = "center"><math>3</math></td>
| |
| − | <td align = "center"><math> 0.050107 </math></td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td align = "center"><math>4</math></td>
| |
| − | <td align = "center"><math> 0.01049 </math></td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td align = "center"><math>5</math></td>
| |
| − | <td align = "center"><math> 0.00183 </math></td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td align = "center"><math>6</math></td>
| |
| − | <td align = "center"><math> 0.000274 </math></td>
| |
| − | </tr>
| |
| − | <tr>
| |
| − | <td align = "center"><math>7</math></td>
| |
| − | <td align = "center"><math> 0.0000358 </math></td>
| |
| − | </tr>
| |
| − | </table>
| |
| − | |-
| |
| − | |So, <math style="vertical-align: 0px">n=7</math> is the smallest value of <math style="vertical-align: 0px">n</math> where the error is less than or equal to 0.0001.
| |
| − | |-
| |
| − | |Therefore, for <math style="vertical-align: 0px">n=7</math> the Maclaurin polynomial approximates <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> within 0.0001 of the actual value.
| |
| − | |}
| |
| − |
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Final Answer:
| |
| − | |-
| |
| − | | <math>n=7</math>
| |
| − | |}
| |
| | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |