|
|
| (One intermediate revision by the same user not shown) |
| Line 6: |
Line 6: |
| | | | |
| | <span class="exam">(c) <math style="vertical-align: -15px">\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}</math> | | <span class="exam">(c) <math style="vertical-align: -15px">\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}</math> |
| | + | <hr> |
| | + | [[009A Sample Final 2, Problem 8 Solution|'''<u>Solution</u>''']] |
| | | | |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Foundations:
| |
| − | |-
| |
| − | |'''L'Hôpital's Rule'''
| |
| − | |-
| |
| − | | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math> and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
| |
| − | |-
| |
| − | |
| |
| − | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -4px">\pm \infty ,</math>
| |
| − | |-
| |
| − | |
| |
| − | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
| |
| − | |}
| |
| | | | |
| | + | [[009A Sample Final 2, Problem 8 Detailed Solution|'''<u>Detailed Solution</u>''']] |
| | | | |
| − | '''Solution:'''
| |
| | | | |
| − | '''(a)'''
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |First, we have
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow \infty}\frac{\frac{1}{x}+x}{1+\sqrt{1+x}} \frac{\big(\frac{1}{\sqrt{x}}\big)}{\big(\frac{1}{\sqrt{x}}\big)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we have
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x^{3/2}}+\sqrt{x}}{\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\big(\frac{1}{x^{3/2}}+\sqrt{x}\big)}{\lim_{x\rightarrow \infty}\big(\frac{1}{\sqrt{x}}+\sqrt{\frac{1}{x}+1}\big)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{\lim_{x\rightarrow \infty}\frac{1}{x^{3/2}}+\lim_{x\rightarrow \infty}\sqrt{x}}{\lim_{x\rightarrow \infty}\frac{1}{\sqrt{x}}+\lim_{x\rightarrow \infty}\sqrt{\frac{1}{x}+1}}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{0+\lim_{x\rightarrow \infty}\sqrt{x}}{0+1}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\infty.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | '''(b)'''
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |First, we write
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}\frac{(\cos x+1)}{(\cos x+1)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x (\cos x+1)}{\cos^2x-1}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x(\cos x+1)}{-\sin^2 x}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\cos x+1}{-\sin x}.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we have
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^+} \frac{\cos x+1}{-\sin x}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{-\infty}
| |
| − | \end{array}</math>
| |
| − | |-
| |
| − | |and
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 0^-} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{\cos x+1}{-\sin x}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\infty.}
| |
| − | \end{array}</math>
| |
| − | |-
| |
| − | |Therefore,
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}=\text{DNE}.</math>
| |
| − | |}
| |
| − |
| |
| − | '''(c)'''
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |We proceed using L'Hôpital's Rule. So, we have
| |
| − | |-
| |
| − | |
| |
| − | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we have
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{3(1)^2}{10(1)^9}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{3}{10}.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Final Answer:
| |
| − | |-
| |
| − | | '''(a)''' <math>\infty</math>
| |
| − | |-
| |
| − | | '''(b)''' <math>\text{DNE}</math>
| |
| − | |-
| |
| − | | '''(c)''' <math>\frac{3}{10}</math>
| |
| − | |}
| |
| | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |