Difference between revisions of "009A Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
  
 
<span class="exam">on the interval &nbsp;<math style="vertical-align: -5px">[0,2].</math>
 
<span class="exam">on the interval &nbsp;<math style="vertical-align: -5px">[0,2].</math>
 +
<hr>
 +
[[009A Sample Final 2, Problem 6 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' To find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on an interval &nbsp;<math>[a,b],</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; we need to compare the &nbsp;<math style="vertical-align: -5px">y</math>&nbsp; values of our critical points with &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b).</math>
 
|-
 
|'''2.''' To find the critical points for &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we set &nbsp;<math style="vertical-align: -5px">f'(x)=0</math>&nbsp; and solve for &nbsp;<math style="vertical-align: -1px">x.</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Also, we include the values of &nbsp;<math style="vertical-align: -1px">x</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; is undefined.
 
|}
 
  
 +
[[009A Sample Final 2, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
!Step 1: &nbsp;
 
|-
 
|To find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on the interval &nbsp;<math style="vertical-align: -5px">[0,2],</math>
 
|-
 
|we need to find the critical points of &nbsp;<math style="vertical-align: -5px">f(x).</math>
 
|-
 
|Using the Quotient Rule, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{(1+x)(1-x)'-(1-x)(1+x)'}{(1+x)^2}}\\
 
&&\\
 
& = & \displaystyle{\frac{(1+x)(-1)-(1-x)(1)}{(1+x)^2}}\\
 
&&\\
 
& = & \displaystyle{\frac{-2}{(1+x)^2}.}
 
\end{array}</math>
 
|-
 
|We notice that &nbsp;<math style="vertical-align: -6px">f'(x)\ne 0</math>&nbsp; for any &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|So, there are no critical points in the interval &nbsp;<math style="vertical-align: -5px">[0,2].</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(0)=1,~f(2)=\frac{-1}{3}.</math>
 
|-
 
|Therefore, the absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>
 
|-
 
|and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">\frac{-1}{3}.</math>
 
|}
 
 
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;The absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>&nbsp; and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">\frac{-1}{3}.</math>
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 

Latest revision as of 10:18, 1 December 2017

Find the absolute maximum and absolute minimum values of the function

on the interval  


Solution


Detailed Solution


Return to Sample Exam